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Introduction

Thepurposeof this paperis to give an accountof Connes’noncommutative
geometry,insofaras it is usedto “derive” the classicalfield theory Lagrangian
of the StandardModel of particle physics. Previously published [10—12] or
widely circulating [29] treatmentsaresketchy, either in the physics or in the
mathematicsor in both, so we deemthat amoredetailedandupdatedtreatment
is warranted.

We review the mathematicsof noncommutativegeometryin sections1 to 5.
Prerequisiteson bundlesof spinors,Dirac operatorsandthe like areconfinedto
theappendix.The final threesectionsdealwith the applicationto the Standard
Model. Thispaperdoesnotgive a treatmentof all branchesof noncommutative

geometry;in particular,cyclic cohomologyis not emphasized.
Section 1 introducesthe Dixmier trace,which hasbecomean essentialmath-

ematical tool of noncommutativegeometry.Section 2 gives a new proofof
Connes’ trace theorem, which is the bridge betweencommutative and non-
commutativeintegration theories. In sections3 and 4, we give the algebraic
underpinningsof noncommutativegeometry:universalforms andconnections
andthe relevantcohomologytheoriesare introduced.

Section5 is the heartof thetheory; weintroduceK-cycles andthe ‘tD homo-
morphism,andwe identify thealgebraof differential formson a spinc manifold
with an algebraof classesof operatorson the Hilbert spaceof the Dirac K-cycle.

In section6, weintroducethe Yang—Mills andfermionicactionsin noncom-
mutativegeometry.We exhibit theHochschildcocycle,which, in the commuta-
tive case,gives the usuallower boundfor the Yang—Mills action. Gaugeinvari-
ance is examinedin the noncommutativecontext.We also touch on the matter
of Poincaréduality.

The Glashow—Weinberg—Salammodel for electroweakinteractionof leptons
is derived in section 7 from the product K-cycle of the Dirac K-cycle on a
compactifiedspacetimeanda K-cycle for a two-point space,which is a carrier
for the massof elementaryparticles.

In section8, the full StandardModel is developed.Colour symmetryappears
by introducing a supplementarybimodulestructureon the K-cycle. We touch

on the questionof whether the Connes—Lottapproachgives new information
on the parametersof the StandardModel. The hyperchargeassignmentsfor the
severalfermions arederived.

From the philosophicalpoint of view, it canbe arguedthat whatwe do is to
interpret geometricallythe intricacies of an accuratephenomenologicalmodel:
high-energyphysicswould in factbe the unveiling of the fine structureof space-
time. In particular,the Higgsbosonwould beanothergaugefield, corresponding
to a couplingamongthe leavesof spacetime.In this way, the fact that the Higgs
fields behaveratherlike Yang—Mills fields in that they areself-interactingand
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havea “pointlike” interactionwith fermionsreceivesasurprisinggeometrical
explanation.

Someoutstandingproblemsremain.Thechoiceof K-cycles is somewhatem-
pirical. K-cycles on spaceswith indefinite metric havenot beenstudied.Lastly,
no oneseemsto knowhowto quantizethe actionwithin the frameworkof non-
commutativegeometry.

1. Idealsof operatorsandDixmier traces

1.1. We recall somefacts aboutcompactoperatorson Hilbert spacesthat we
will need.SupposeN is a separableinfinite-dimensionalHubertspace,andthe
operatorA E £ (N), the spaceof boundedlinear operatorson N, is compact.
Then A hasa uniformly convergentexpansion:

A = ~ (1.1)
J�0

whereeachsj > 0, with so(A) � s~(A) > ..., and{~‘~},{~}are orthonormal
sets.This is easilyprovenusingpolardecompositionA = U~AI,where Al
(AtA ) 1/2 is compactself-adjoint;the s1(A) are the nonzeroeigenvaluesof Al
(with repeatedmultiplicity), the çb~areits eigenvectorsandthe ~ = Ucbi are
the eigenvectorsof (AAt ) 1/2•

Thes~(A),called thesingular valuesof A, playthe mainrole in the theoryof
idealsthat follows. Also of importancearetheir partialsums:

(1.2)

Oneneedsseveralinequalitiessatisfiedby thes~(A) and theo~(A). Many of
them areestablishedfrom the formulae:

s~(A)= inf{ IA — TII :‘T E K~}, (l.3a)

= sup{IIAEII1 :dimim(E) = n}. (1.3b)

Here/C~denotesthesetofoperatorsof rankat mostj, E anorthogonalprojector,
and II Ii denotesthe tracenorm.

For instance,from (1.3a)andthe trivial XL + I~kC ~i+k, onegets

Si+k(A + B) ~ s1(A) + sk(B), si+k(AB) ~ Si(A)sk(B). (1.4)

[For the secondinequality,apply (l.3a) after noting thatif T1 E ?C~,T2 E /Ck,

then (A — T1)(B — T2) = AB — T3 with T3 = T1B + (A — T1)T2 e
From (1.3b) onehas immediately

a~(A + B) < a~(A)+ a~(B), (1.5)

i.e., the a,1 arenorms.
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Anotherusefulresult is Weyl’s theorem:

~lAi(A)l~an(A), (1.6)

where)~(A) are the elgenvalues of A, arrangedin order of decreasingabso-
lute valueandcountedwith (algebraic)multiplicity. This needssomeexterior
algebrafor a quick proof [37, p. 11].

1.2. Suppose£ is anontrivialidealin£ (N). A normlll~lIlon £ iscalledsymmetric
if

IIIABCIII < ~ IIIBIII ICII for B E £, A, C E £(N). (1.7)

We saythat£ is a symmetricallynormed ideal if £ is completein the norm 11111.
The theory of symmetricallynormed ideals may be found in Gohbergand
Krein [21], whosetreatmentwe summarizehere.

Examplesarethe well-knownSchattenideals£‘~(N) for 1 ~ p < iv~andthe
maximalideal£~(N) of all compactoperators.If A denotestheset of finite-rank
operators,then~CC £ ~ £~. Sometrickier examples,in particularthe Dixmier
trace class,areof paramountimportancein noncommutativegeometry.

It is not hardto show—using(1.7) andpolardecomposition—thatthe sym-
metric normsof A andof Al are equal,andhencethat lIlA Ill dependsonly on
the singularvaluesof A. Thus we have,for finite-rank operators:

IIIAIII = ~(s0(A),s1(A),s2(A),...), (1.8)

where 1 is a function, with nonnegativereal values,definedon the conek00
of sequencesof nonnegativenumbers(x0,.. . , x,~,0,0,...) satisfyingx1 > x1~1
for all j whichare zeroafterfinitely manyterms.The necessaryandsufficient
conditionson such afunction~l to yield a symmetricnormare:

(i)k(ctx) = ct~(x)ifx E k00, c~>0;
(ii)b(x + y) <~(x) + ‘1(y) ifx,y E k00
(iii)~(x) >0ifxEk00,x~ 0;
(iv)~(l,0,0,...) = 1;
(v) if x~< i~0y~for all n,then b(x)<1(y).

A function on k00 satisfying (i)—(v) is called a gauge. Property (v) holds since,
if A, B arecompactpositiveoperatorswith x, y asrespectivesetsof eigenvalues,
thenA = CB whereC is an operatorwith IICII < 1, so that IIIAII1 ~ IIIBIII.

Let usdenoteby k0 the coneof nonincreasingsequencesof nonnegativenum-
berswhich tendto zero. We thendefine

kcp:={xEko:~(x):=sup~(xi,...,xn,0,0,...)<c~c},

:= {A e£°°(N):(s0(A),s1(A),s2(A),...)ek~p). (1.9)

Then£~is asymmetricallynormedideal; its norm givenby (1.8), whoseright
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handsideis of the form J~(x) with x e k~p.That£~is a vectorspaceis dueto
the inequality (1.5).

Notice that the gauge I~(x) : = x1 gives£~= £°°(N), in which case(1.8)
is the usual operator norm; c

1i (x) : = ~ x~gives the trace-classoperators
£‘ (N), andthe Schattenclasses£~(N) come (by definition) from J~(x) : =

(>I~x~) ~ Thecorrespondingsymmetricnormsare traditionallywritten II
The class£2(N) is the Hubert—Schmidt class. All of these ideals are separable,
which is to say,the finite-rankoperatorsAC aredensein each.

Fromthepropertiesof agauge,it is easilyseenthat‘I~(x) ~ cP (x) ~ 1i (x),
so that I~is minimal andC1i is maximal among all gauges. In consequence, we
havethat£‘ C £ C £~for any symmetricallynormedideal£.

Thereexistsymmetricallynormedidealsof compactoperatorswhich arenot
separable,i.e., in which the finite-rank operatorsarenot dense.Let Am denote
thefinite-rankoperator~ ~s~(A) I Wi) (cb

1I; clearlyAm e£~wheneverA e
The finite-rank operatorsare denseiff lilA — AmIll —~ 0 as m —~ ~. Thus £~is
not separableif

1im~(Xm+i,Xm+2,...)~ 0, (1.10)

wheneverx e k~.We shallgive explicit examplessoon.We denoteby £~the
closureof the finite-rank operators,which is a properclosedsubspaceif £~is
not separable.

Two symmetricallynormedidealscoincide:£‘~= £~“algebraically(andalso
topologically, by the closedgraphtheorem)iff 1 and ‘P areequivalentin the
sensethat:

C1’P(x)’(~(x)<C2’P(x), with0<C1<C2<oc. (1.11)

Thedualspaceof asymmetricallynormedideal canbe identified as follows.

We definethe “dual gauge”of P to be the function:

:= :xek00, x� o}~ (1.12)

where(x,y) : = ~lk xkYk.Onechecksthat 1’ is alsoagauge;property(iv) comes
from the inequality x1 ~ c1(x).Since (x,y) = sup{~(x)tP’(y): xe £~,ye
£~}, we seethat c1” = cj~Then one can showthat, unless~ is equivalent
to ~, the dualof£~is isometricto £~‘, andmoreoverthe duality is givenby
functionalsof the form A ‘—~ Tr [AB], for B e£°‘. The well-knownduality of
the Schattenideals£~and£~‘when 1/p + l/p’ = 1 is a special case of this.

1.3. We can now produceexamplesof nonseparableideals. Suppose11 is a
sequenceof positivenumberswith ni � ~ +1 for all I and ir1 = 1. Define:

~H(X) := SUP{~Xi ~ (1.13)
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for X e k00. Then ‘1~jjsatisfies(i)—(v) andso definesan ideal £jj := ~ In
generalit turns out that therearethreecases:

(i) ~ ~ <cc: thencTJ~1-1 is equivalent to ‘~, and£11 =

(ii) limi ~ > 0: then~b11is equivalentto c1~,and£fl =

(iii) >I~~= cc andlim1ir~= 0: then (1.10) holds, since 1(mm+i,mm+2,
—p 1, andso £11 is not separable.

We canmoreoveridentify the dual spacefor case(iii) ideals.Let ~ denote
the function

~(X) := (H,x) = (1.14)

From(1.12),thedualgaugeto I~isjust‘111 (hencethenotation);also,sincethe
tail of aconvergentpositiveseriesvanishes,theassociatedideal‘L1-j is separable.
Fromthe remarksafter (1.12),we havethat ~Ci-~is the dualspaceof £jjo, and
£11 is the dualspaceof’Ljj. Since£11 is not separable,but £110 is, thesethree
spacesaredistinct, andtheyarenot reflexive.

Finally, take~r1: = 1 / (j + 1), the harmonicsequence,obviouslybelongingto
case(iii). As the harmonicseriesis asymptoticallylogn + y, with y the Euler—
Mascheroniconstant,wecanreplacethe denominatorin (1.13) by log n.

Lemma 1.1. Let! <p <cc and let p’ := p/(p —1). Denote the norms in £fl

and’Lj-j by 11111111 and ill llIH’~respectively. Then

lIlAIiin’; ~ II“ll~~IA ll~~and IIAlly ~ II J1ll~lllAIIlii. (1.15)

wherelIHll~= ~(p) ~ is the usualsequence-spacenorm. Therefore:

£!C~HC~PC~~HCLOC,foralll<p<cc, (1.16)

wherethe inclusionsare continuous,andall but thefirst are dense.

Proof Holder’s inequality gives IIIAIII11’ = YJ 7r~si(A) ~ llHll~llAIl~,yielding

the first estimatefor A e£~.

On the otherhand,if A e £11, we have

>s1(A) ~ IlIAillH~7ri

for all n. Since the function t i—~ t~is convex, we can apply it to both sides to
obtain

~ IIIAlil~~it~,andso IIA~Il~~ 1IIAIII11IIHIIP. This uniform boundon IIAPZIIP showsthat A E £~with llA~— Ally —~ 0. Letting n —f oo givesthe secondestimateof (1.15). ~
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1.4. We considernow a special two-parameter family of ideals introduced by
Connes [131,denoted ~ (N) or simply£P~’1,where1 <p < ccand 1 <q < cc.

For q < cc, acompactoperatorA belongsto £~‘ if

<cc. (1.17)
~l+q/p

n=1

Forq = cc: a compactoperatorA belongs to £~‘°° if the sequence n~/.V’ a~(A)
is bounded—whichis equivalentto Sn (A) = 0(n’ IP).

A corresponding gauge is

1/q

~(X) := ~(! + q/p/)_1I~(~n 1+~IP’)(x1+ ... + xn)~)

it clearly satisfies all the requirements for a gauge except perhaps for (ii),
which follows from Minkowski’s inequality. Thus the classof operatorssat-
isfying (1.17) is indeeda symmetricallynormedideal £~.

It is possibleto showthat£~“ C £~~2~’~2with strict inclusionif p1 <P2 orp1 =

P2 andq1 <q2 andthat£~‘~is the standard Schatten class £~. The£~‘~ =:

arecalled weak-,C~spacesby Simon [37].
Defining a : = 1/p and /3 : = 1 /q, one can nicely represent those ideals as

points (a, /3) of a squareof side equalto 1, with the Schattenclasseson the
diagonal.Duality is symmetrywith respectto the middle point of the square,
excepton the boundary,whereweindeedhavethat £P+ is the dualof £P’,l but
the latter is not the dualof the nonseparable£~+, but of the norm closure£~+
of AC, with respectto the norm

lIAII~+:= sup~~3~. (1.18)

OnehasAeLr ifs~(A) =

Noticethattheverticalsidesof the squarearevoid. We areneverthelessgoing
to identify the four corners:£~,00 : = £°° and£1,1 : = £1, to beginwith. Also,
£1+ is the Dixmier traceclassideal—orDixmier ideal, for short—ofoperators
A suchthat:

IIAII1+ := sup <cc. (1.19)

This is just £11 whereH is the harmonicsequence,so it is the dualof theso-
called Macaevideal [32]: £~c,1= ‘/.H For any A e £“~, B e ~ we have
ABe £‘t

Notice that4 + is the set of compactoperatorssuchthat the orderof growth
of the partialsumsof singularvaluesis lessthanlogarithmic. In the chink just
aboveit, Dixmier traceswill lodgethemselves.
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1.5. We come,then,to the questionof thetrace. If A is a positiveoperatorin
the Dixmier ideal £‘ +, we would like to definea positivefunctionalTr~by

Tr~A= lim a~(A) (1.20)
n—’~logn

on positiveoperatorswith the traceproperty,andextendit alsoto nonpositive
operators in £‘t Notethat Weyl’s inequality (1.6) guaranteesthat (!ogn)’ x

~ (A) is a bounded sequence if a~(A )/ log n is bounded.
An evidentbut crucial propertyof the traceTr~will be that it vanisheson

theordinarytrace-classoperators£1, since~ s~(A) is convergent.(This is why
the nondensityof the first inclusionin (1.16) is important.)

Therearetwo difficulties with formula(1.20).Obviouslythe “limit” involved
mustbesomesort of generalizedlimit processwhich shouldbemeaningfulfor all
boundedsequencesandnot just for convergentsequences.Moreover,it should
besuchthattheright handsideof (1.20) is anadditivefunctionalon thepositive
coneof £1+.

Write y~(A):= a~(A)/lognfor A E £‘~ positive. From (1.5) we get
y~(A+B) < y~(A)+ y~(B).Now (l.3b) simplifies to a~(A) = sup{Tr(AE)
dimim(E) = n } for positive A, thus a~(A) + a~(B)< a2~(A+ B), and
so y~(A)+ y~(B)< y2~(A+ B) (1 + log2/!ogn). Thus (1.20) will be ad-
ditive provided the generalizedlimit involved satisfies the scaling property
limy2~(A) = limy~(A).

Dixmier [16] noticed that generalizedlimits with the right type of scale
invarianceare indeedavailable. One replacesthe formal limit lim~~by a
meanlim~on the space~(~) of bounded sequences, which is a linear and
positive (hencecontinuous)functional equallingthe usual limit for conver-
gent sequences,andsatisfyinglim~~~= lim~x~for x e /~(~J),where~ =

(xO,Xo,x2,x2,. . ~ Define f~~ L°°(R)by fv(t) := x,~whenever
n < t < n + 1 or —n — 1 < t < —n. The affine group M( I) acts on ~ and
hence on L~(E!~)by translationsanddilationst ~ at + b (a ~ 0, b e !fl. Now
M(l) is amenable,that is to say, thereis a positivelinear (thus continuous)
functionalw on L°°(FR)with w(1) = 1 which is M(l)-invariant; indeed,there
arean infinity of suchinvariantmeans.Let limox~: = w (f’).

Clearly lim~is a positivelinear functional on £°~(~). Fromthe translation
invarianceof w, we get !im~x,~ = 0 if f~vanishesat infinity, i.e., if x,~—~ 0.
Also, lim~ of the constant sequence 1 is w (1) = 1; thus lim~x~is the ordinary
limit when x is a convergent sequence. Finally, the invariance of w under t ~ 2t
gives lim~ X2n = !im~~. Since

(log(n + 1) ‘\ s~~1(A)

y~(A)— y~~1(A)= k,, lo n — l,)Yn+l(A) — lo ,, (1.2!)

we have y~(A)— y~~1(A)—+ 0 as n —p cc. With x~:= y~(A),we then have
that ~,, — x~—~ 0 as n —~ cc. Therefore lim~X~= lim~i~~= 1im~x2~,i.e.,
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lim~y~(A) = lim~y2~(A).Also, lim~y1~(A) hasthe propertyof unitaryinvari-
ance(sinceit dependsonly on the eigenvaluesof the positiveoperatorA), so it
extendsby linearity to atraceTr~on the ideal £1 +~

The linearfunctionalslim~on £°°(rkJ)lack the propertyof countableadditiv-
ity, like the meansw themselves,andthus the tracesTr~are not ultraweakly
continuous,andsocannotbe explicitly computedin general.This is not a major
obstacle,however:wheneverone canshowthat y,~(A) = y~+ z,~,wherey is
a (computable)convergentsequence,andZ~= y,1 (B) for someB e£~,then
Tr~(A)is theordinary limit lim~~y,~.This turns out to be thecaseof interest
for noncommutativegeometry.We will thereforecontinueto usethe notation
Tr~andthe expression(1.20) for suitableA e £1+.

2. The tracetheorem

2.1. The Dirac operatoron a spinc manifoldM is a particular exampleof an
elliptic pseudodifferentialoperator.(Wereferto theappendixfor thedefinition
andpropertiesof the Diracoperator.We shall hereandhenceforthsupposethat
M is a compactsmoothmanifold,withoutboundary.)

To anypseudodiferentialoperatoron a compactmanifold,we canassociate
a matrix-valuedfunction on the cotangentbundle,called its principal symbol.
If the operatoris of order — dimM, one can define a certainintegral of the
matrix traceof this function, called the residueof the operator.At the heartof
noncommutativegeometrylies thetracetheoremof Connes,whichsaysthatthe
Dixmier traceof such an operatorequalsits residue.

2.2. We first reviewbriefly thestandardfactsaboutpseudodiferentialoperators
on manifolds [31, 39]. A differentialoperatoron acompactmanifoldM is a
linearmapF: 1(E) —~ 1(E) on sectionsofa vectorbundleE overM—of rank
k, say—which can be written, in local coordinatesfor suitable trivializations
ofE, asP= ~IaI<mf~(X)(_i)IaI8k~I/aXa, whereeachf~,isak x k matrix of
smoothfunctions~nM and m is the order of P.

The“completesymbol” of P is

Pm-i = ~ fa(x)~.
j=0 IaI=m—i

The leadingterm in this sumis theprincipal symbol

~ f~(x)~.
clI=m



232 iC. Várilly and f.M. Gracia-BondIa / Connes’noncommutativedifferentialgeometri’

TheoperatorP is thengiven on local sectionsby

Pu(x) ~

(2.1)

The principal symbol hasan invariant meaning.Let ir: T* M —~ Al be the
canonicalprojection for the cotangentbundle. We can use it to pull back E
to the bundle lr*E, with the samefibres as before,over T*M. The principal
symbol determinesa bundlehomomorphismof lr*E, i.e., a sectionp,~of the
bundlem~End(E) overT*M, which is clearly the pullback of End(E) by the
cotangentprojection:

7r*End(E) —* End(E)

(2.2)

T*M —f-’ Al
A so-calledclassicalpseudodifferentialoperatorP of order in (on a trivial

vector bundle over R~)hasalso a “complete symbol” p(x,~)which has an
asymptoticexpansionof the form

p(x,~) ~Pm_i(X,~), (2.3)

wherenow mcan be any complex number, and the Pm—iarematricesof smooth
functions,homogeneousin ~ of degree(m — I), i.e.,

Pm_j(X,~)

Some additional conditions are usually imposed to control the growth of p in

the x variables. Weshallconsideronly classicalpseudodifferentialoperatorsin
the sequel. Wewill write am(P) : = Pmto denote the principal symbol of P.

An importantformula[39] relatesthecompletesymbolofan operatorproduct
R = PQ to those of the factors by the expansion

i~k~
r(x,~) ~ —~—(l9~p)(3,~q). (2.4)

a.

In particular,the leadingterm al = 0 of (2.4) showsthat the principal symbol
of an operatorproductis the productof the principal symbolsof the factors:

rm+m’(x,~) = Pm(X,~)qrn’(X,~), (2.5)

wherethe orderof PQ is m + m’, sincethe right handsideis homogeneousof
this degreein ~. Furthermore,the completesymbolof the adjoint operatorP~
is a complicatedexpression,but its principal symbol is just the hermitiancon-
jugatep~ (x, ~). As a consequenceof all this, the principal symbolof apositive
pseudodifferential operator R = ptp is nonnegative.
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Pseudodifferential operators of sufficiently low degree are integraloperators
of the form: Pu(X) = f k(x,y)u(y)d~(y),where k is locally summable.When
k is smooth, P is a “smoothing operator” of order —cc; two pseudodiferential
operatorswith the sameasymptoticexpansioncandiffer by asmoothingoper-
ator.

Anotherregularitypropertyof pseudodifferentialoperatorsis thattheysatisfy
L2 estimatesof various kinds. We mention only two of these,which we will
need: an operator of order 0 is boundedon the Hilbert spaceL2(E) of square-
integrable sections, and an operator of order —n is compact. For the proofs, we
refer to refs. [31, 39].

2.3. An operator P acting on sectionsof a vectorbundleE on a manifold M
is a pseudodifferential operator of order m, by definition, iffs i—* ~P(~s) is a
pseudodifferential operator of order m whenever~, W e C°°(M) are supported
in trivializing chartsfor E.Any P maybe reconstructed from such components
by suitable partitions of unity.

Apseudodifferential operator is calledelliptic if itsprincipalsymbol is a bundle
isomorphism of the zero section of T*M. SupposingM to be a Riemannian
manifold, so that Il~lI2is defined, this means that the linear transformation
Pm(X,~) of the fibres of E is invertible on the “cosphere bundle” S*M :=
{(x,i~)e T*M: ll~lI= l}, sincepm is homogeneous in i~.

By propositionA.7 of theappendix,theprincipalsymbolofthe Diracoperator
D is the operator c(~)of left Clifford multiplication by ~, and so D isafirst-order
elliptic operator.

TheLaplacianA = —D2 has principal symbol_II~lI2,andsoisasecond-order
elliptic operator. The resolvent operator (—A — ~ 1 is pseudodifferential and
an expansion for its symbol can be found in manyimportantcases.

2.4. A useful calculus for pseudodifferential operators has been worked out by
Seeley [36]. Complex powers PS of a pseudodifferential operator can be defined
as Dunford integrals

P5:=

If P is elliptic and of order —n, the integral kernel k~(X, y) of PS is holomorphic
in the right half-plane Re s> 1, and s i~—~k

5 (x,X) can be continued analytically
to a meromorphic function with simple poles at { 1 — k/n : k = 0,1,2,..
Explicit formulas for the residues can be given in terms of the complete symbol
of P.

As a consequence, the zetafunction

~p(S) := Tr(Ps) := fks(x~x)~ (2.6)



234 J.C. Várilly andJ.M. Gracia-Bondia/ Connes’noncommutalivedifferential geometry

is a holomorphicfunctionon the half-planeRes> 1, which continuesanalyti-
cally to a meromorphicfunctionwith the samesimplepoles.The residueof the
zetafunctionat the leadingpole s = 1 dependsonly on the principal symbol
of F, andis given by the following formula [36, 41], which we defineto be the
residue of the pseudodifferentialoperatorF:

ResP:=Res~P(s)=—(2)
1+l. ffAtrbn(x~)~dxd~

SMF

1 f/if A
= n(2m)~I ~2miJ ~

= 1 (2.7)

S.,l,f

whereb~(x, ~, A) denotesthe principal symbol of a parametrixfor the opera-
tor P — A.

If Q is a positive elliptic pseudodifferentialoperatorof order —rn < —n.
then its zeta function ~ is holomorphic on the half-plane Res > n/rn and in
particularats = 1, so its residuevanishes;andof courseoneconventionallyhas
a~(Q) = 0. Thus wecanextendthe definition of ResP to operatorsof order
lessthan —n in thistrivia! fashion: ResP:= 0 if the orderof P is lessthan—n.

We computetwo simplebut importantexamples.

Proposition 2.1. Let A be the Laplacian on the n-dimensional torus T~andE be
thetrivial line bundleon F’. Then

n Res((1 —A)~~2)= Q~E2m~/2/T(n/2) (2.8)

is the area of the unit sphere§‘~.

Proof Since1 —Ais secondorder,the operator(1—A )_~u/2has order —n,andits
principalsymbol isa~((1 —A)~/2) = li~lI”~whichis the constantfunction 1
on the cospheremanifold S*M. Thus the desiredresidueis

1 [ ld~dx= 1 Q~I dx = ~. ~ (2.9)
n(22r)~,j n(2ir)” j n

S~T’

Proposition 2.2. Let A be the Laplacian on the n-dimensional sphere S” and E
be the trivial line bundleon S”. Then

Res((1 —A)”2) = 2/n!. (2.10)

Proof The desiredresidueis now
1 ~

n(2m)” “I — n(2jt)~’
5,,
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andthe result follows from the LegendreduplicationformulaF (~n )F (~(n +
1)) = ~ (n — 1)! for the gammafunction.

2.5. ThedeeptheoremunderlyingthecomputationoftheYang—Mills functional
in noncommutative geometry [8] is the surprising fact that the residue of a
pseudodifferentialoperatorof orderat most—n is equalto its Dixmier trace!
We illustratethis first with the exampleof the inverseof the one-dimensional
harmonicoscillatorHamiltonian H(x,ç~)= ~(x2 + ç~2)Although in thiscase
the manifold is not compact,we still find:

Tr~H’ = lim !~ 2 = 1. (2.1!)
n—’oologn 2k+1

k=0

But also
ResTr(H_s) = Res(2s_l)ç~(s)= 1, (2.12)
s=0 s=1

where~ is the usualRiemannzetafunction; and the integralof the principal
symbol is

ResH’ = 1 7 2 ~ = 1, (2.13)2~j 1+x2-_
corroboratingthe residueformula (2.7).

2.6. Beforeproving the tracetheorem,we will first calculatethe Dixmier trace
for the previousexamples.

Example 1. Let A be the Laplacianon the n-dimensionaltorusF’. The eigen-
valuesof

02 02

areall pointsl~of the lattice Z~with multiplicity one.We thusneedto estimate
(log N)’ ~ (1 + lull2 )_n/2 as N —~ cc. LetNR be thenumberoflatticepoints
in theball of radiusR centredattheoriginof l~.ClearlyNR “.~ vol{x: lIxIl ~ R},
andso Nr+dr — Nr Q~r”’ dr. Jfs < —n/2, we have

~ (1 + 111112)5 f( 1 + r2 )S (Nr+dr — Nr)

IIlII�R 0

= Qnf(! + r2)~r~dr

~Qnfr25+n1dr, (2.14)
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so, since log NR ‘-.~ n log R, we get

(10gNRY’ ~ (1 + ll/112)S , 0
II/H<R

for s < —n/2, and

(logNR)’ ~ (1 + ll/lI2Y~2 Qn1ogR = (2.15)
U/I~R

Therefore the sequence (log N)’aN (F) convergesfor P = (1 — A ) n/2 and
vanishesforP = (!_A)Swiths < —n/2.Thus (l—A)~/2 e £‘~ and (l_A)-~ E

£~for s < —n/2; andmoreover

Tr~((1—AY~’2)= Q~/n. (2.16)

Example2. Let A betheLaplacianon the n-dimensionalsphereS”. Theeigenva-
lues [25] of A are 1(1 + n — 1) with respective multiplicities rn

1 = (~“)—

(/_2), for / e rti. For example,if n = 2, the eigenva!uesare 1(1 + 1) and the

mu!tiplicities are (2/ + 1). Wemust estimate aM/bM as M —‘ cc, wherethe
denominatoris

b,~1 := !og~tn1~10g((M+ n) + (M +n ~1)) (2.17)

by telescoping,so bM —j n log M, whereasthe numerator is

Al Al

aM = ~m1(l + 1(1 + n — l))~/
2 ~ ~ ~

10 /=0 ( ~n)
M

2 , 2logM

(n — 1)! ~(1 + ~n) (n—!)! (2.18)Thus
Tr~((l —A)~’2) = lim 2logM/(n— 1L = (2.19)

Al—’cc n!ogM n!
Moreover, if we replace the exponent —n/2 by a lessers, the series for at~
becomesconvergent, and so the Dixmier trace vanishes,just as in the former
example.

2.7. In both examples, for P = (1 — AY~’2, we find that Tr~ P = ResP.
Connes’tracetheorem[8] is that this equalityholdsin general.

The proof originally given by Connesconsistsin showing that the Dixmier
traceequalsthe normalizedintegralof the principal symbol, i.e., the right hand
side of the definition (2.7). This is done by showing that the theorem may
be reduced to one special case, namely P = (1 — A )_n/2 on Al = §“, where
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equality follows by comparing (2.10) and (2.19). Because of the central rOle of
this theorem, we give here a different proof.

Theorem 2.3. Let M be a compactRiemannianmanifoldofdimensionn, E a
complexvectorbundleon M, andP: 1(E) —~ F(E) apseudodifferentialoperator
oforder —n. ThenPc £‘~(L2(E)) and

Tr~(P)= ResP= 1 f tra~(P). (2.20)n (2,r)~ j

S M

Moreover, this quantitydependsonly on theconformalclassofthemetric on M.

Proof The Hilbert spaceN on which P acts is the completion of F (E) to the
space of square-integrable sections L2 (E) with respect to the inner product
obtained from the Riemannian metric. If N, and N

2 comefrom two confor-
mally equivalent metrics, the identity operator on 1(E) extendsto a linearmap
T: N, —~ N2 which is bounded with bounded inverse. Since Tr~(TPT’) =

Tr+ (P), the Dixmier ideal and traces are the same for both. Furthermore, the
cosphere bundle S~M,as a submanifold of PM, dependson a choiceof met-
ric in M; but sincea..~(P) is homogeneousof degree—n in ~, the change-of-
variablesformulashowsthattheintegralonthe right of (2.20) is constantwithin
each conformal class.

By linearity of Tr~P anda~(F) in P, it suffices to establish the theorem for
P a compactpositiveoperator.In view of the equality(2.7), it sufficesto show
that Tr~P is finite and equals ResP = Res5,1~p(s) = Res~1~~osk(P)~
for P pseudodiferentialof order—n.

The residueof the zetafunctionof apositive operatormaybe relatedto the
size of its eigenvaluesby usingthe Ikehara—WienerTauberiantheorem.We re-
call [26] thatthiscanbestatedas follows. Supposethat f(s) = f0°°e_5tF(t) dt
is a Laplace transform, where F: [0, + cc) —~ [0, + cc) is a piecewise continuous
nondecreasingfunctionwith at most jumpdiscontinuitiesat an isolatedset of
points, thatf (s) is analytic in a half-plane Res > s0 > 0 and extends to be
analytic on Res ~ s0 save for a simple pole at s = S~with apositiveresidue
C > 0. Then the Ikehara—Wiener theorem assures us that

F(t) ‘-~ Ces0
1, as t —~ cc. (2.21)

Now it sufficesto considerthe nondecreasingstepfunction

F(t) := ~O(t + logs~~~(P)), (2.22)

where0 denotesthe Heavisidefunctionands~(P) is the first eigenvalue of P
less than 1. Since the Laplace transform of 0 (t — a) is s~e_~iS for a> 0, we find
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that

f(s) = ~~sk+~(P)s = ~(~P(S). ~sk(Pr). (2.23)
k=0 k<k

0

Since P is pseudodifferentia!of order —n, we know that ~p and thereforef
satisfiesthe hypothesesof the Ikehara—Wienertheoremwith s0 = 1; and we see
that

C = Resf(s) = Res~p(s)= ResP. (2.24)
5=1 5=1

From (2.2!), we concludethatF(t) Ce
t as t —‘ cc.

However, (2.22) may be rewritten as

F(t) = k ~ sk+~(P)’ <et <Sk+k
0+, (P)~’, (2.25)

from which it follows that
5k+~(F) ‘-..~ C/k as k —~ cc. We have at once that

PC £‘~(N) andthat
Tr~P=C=ResP.

Corollary 2.4 (Weyl’s theorem on spectral asymptoticsfor the Laplacian). On
a compactn-dimensionalRiemannianmanifold,theeigenvaluesAm oftheLap/a-
cian satisfy

‘ n \2/n fjn \2/fl
AmLA) 4~2(, ) (__) . (2.26)

volM “Qn’

Proof The finitenessof Tr~(1 — A )~/2 givesAm(—A) = O(m21’~).The residue
formularelatesthis to the volumeof the manifold, since the principal symbol
of (1 — A) is the constant 1 on S*M. Indeed, Am (—A )_n/2 C/rn, where C =

ResP= Q~volM/n(2it)~’.

Thus Connes’tracetheoremplacesWey!’s theoremin a new light, as a har-
binger of the theory of noncommutativeintegration. It is worth mentioning
that the pursuitof this goldenthreadled Guillemin to studythe residue [22].
Connes’useof the Dixmier traceprovidesthe eigenvalueestimatesneededto
link geometrywith analysis.

2.8. For completeness,we expoundthe original proof of Connesof the trace
theorem.(The proof in ref. [8] containsa few misprints.) We have already
establishedthe special caseM = 5”, P = (1 —. Ay~/2,andmust show the
general casereducesto this one. We take (2.7) as known; its right handside
is finite for pseudodifferentia! operators of order at most —n and vanishes on
operatorsof order less than —n. Thus ResP defines a trace on this classof
operators.It isthereforeenoughto showthattheseoperatorslie in £~+ (N) and
thatany two tracesareproportionalon this class.

We can write P as a finite sumof operators of the type s ~ ~P(~5), where

W belong to partitions of unity of M. Multiplication operatorsare bounded



J. C. Várilly andJ.M. Gracia-Bondia/ Connes’ noncommutative differential geometry 239

on N, so membership in the ideals £1+ is unaffected by P ‘—p ~ andwe can
restrictto onecoordinatechart, supposingthatM is flat andthatE is a trivial
bundle.Alternatively,wecansupposethatM isa given n-dimensionalcompact
manifold;we takeM = ~

Now S = P(1 — 4) n/2 is an operatorof order0, andthusis bounded.Thus
P = S(l—AY~I2withSbounded.SinceL~’~(N)isanideal,and(l—AY~’2e
£‘~(N) by (2.19),weobtainPe £‘~(N). Sincewealsoknowthat(l—A)~/2e
4 + for s < — n, the sameargumentshowsthatanypseudodifferentialoperator
on M of orders < —n lies in £~andso its Dixmier trace vanishes.This is
in particulartrue for the operatorof order (—n — 1) whosecompletesymbol is
p (x,~) — p,, (x, ~). ThusTr~(F) dependsonly on the principal symbolof P.

Thespaceof all tra_~(F) is just C00 (S*M) (any smoothfunctionon S*M is
of this form [31]); anda_~(P) i—* Tr~(F) is acontinuouslinear form on this
space,i.e., adistributionon thecompactmanifoldS*M. Nowthe Dixmier trace
is apositivelinear functional,andnonnegativeprincipal symbolscorrespondto
positive operators;so this distribution is positive. A positivedistribution is a
measurem[l7],soTr~(P) = fS,Ma_fl(P)dm(x,~).

An isometryq~:S” —+ S’~transformsa_~(P)(x,~) to a~(P)(q5(x),4*~)mb-
calcoordinates(wherec~is the transposeof theJacobianof q5), anddetermines
aunitary operatorU~,on N; P transformsto U~PU~’.SinceTr~(U~PU~’)=
Tr+ (F), the measurem determinedby Tr+ is invariant underall suchisome-
tries. In particular, if ç~is a rotation in SO(n + 1) and if ~(x) = x, then

:. on S~S’2is the transposeof the correspondingrotation in the isotropy
subgroupSO(n) of x; in otherwords,S~S~is a homogeneousspacefor the ac-
tion of SO (n + 1). Now any SO(n + 1)-invariantmeasureis proportionalto
the volume form on St5”. We thereforehave:

Tr~(P)~n(2,v)” f tra_~(P)d~dx= ResP. (2.27)
§* §fl

Theforegoingargumentactuallyshowsthatanytracewhich canbe expressed
as a function of the principal symbol is proportionalto ResF, so it may be
appliedto anyof thevariousTr~introducedby Dixmier. Now, however,from
(2.10) and (2.19), the proportionalityconstantis 1, soTr~P is unambiguous
andequalsResF, as claimed.

3. Noncommutativegeometry:algebrasandmodules

3.1. A compacttopologicalspaceM givesnaturally rise to a commutativeCt-
algebra,to wit, the algebraC(M) of complexcontinuousfunctionsdefinedon
M with the sup norm. Onecandistinguishtopologieson Al by the properties
of C(M). In fact, much more is true: given any nontrivial commutativeCt~
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algebraA with identity, the Gelfand—Naimarktheoremproducesa compact
topologicalspaceM, whichcanbe reconstructedfrom A, suchthatA = C(Al).

A characterof a complex BanachalgebraA is a nonzerohomomorphism
—~ C. We denoteby M(A) the set of charactersof A. We may assume

thatA hasan identity 1; otherwiseonecanadjoin an externaloneand usethe
augmentedalgebraA+ : = Cx A.Thecharactersof acommutativeunital Banach
algebra form a nonemptyclosed subsetof the unit ball of the dual spaceA’
(with the weakt-topobogy),andas suchis a compactset,by Alaoglu’s theorem.
This “Gelfand topology” of M(A) is the weakesttopology which makes all
evaluationmaps~ ~ p(a) continuous;thus if we write c~(p):= ~u(a), the
Gelfandtransformabelongsto C(M(A)). TheGelfand—Naimarktheoremthen
assuresusthatfor Aacommutativeunital Ct-algebra.thehomomorphisma ~ a
is in fact an isometric *-isomorphism of A onto C(Al (A)).

Thus, not only is it true that, given a compact,Hausdorfftopological space
M, thereis the algebraC(M) associatedto it; it is alsotrue that a given com-

mutativeunital Ct-algebrais associatedto only one topological space,which
maybe reconstructedfrom thealgebra,to wit, the characterspace.Beyondits
future uses,the theoremgivesusconfidenceto think of generalC*~algebrasas
noncommutativetopologicalspaces.

Now, to someextent, algebrasof smoothfunctionscan be substitutedfor
algebrasof continuousfunctions. Considera compactsmooth manifold and
A := C~(M). Then M(A) = Al. The last equality extends the Gelfand—
Naimarktheoremandcan be seenas follows. First, a characterp of the sym-
metric Fréchetalgebra COG(M) is a multiplicative linear form, andas suchis
automaticallycontinuous[34]; henceit is adistributionon Al. Sincep (Ia 12) =

p(ata) = p(a~)p(a)= Lu(a)12 � 0, this is a positive distribution and thus is
a measureon M [17]. That is to say, it extends to a continuous character on
the Ct-algebra C(M); so we conclude that M(..4) = Al. Unfortunately,there
seems to be no easy way to characterize algebras isomorphicto C°~(Al) among
commutativeinvolutive Fréchetalgebras.

The pair (COG(M),C(M)) is a commutative “smooth algebra”. We have
just seenthat the first elementof the pair determinesthe second;for a general
smooth algebra A := (A°°,A°°),where A~may be a noncommutative C*~
algebraandA°°is an involutive Fréchetsubalgebradensein AOG, the situation
is moreinvolved [40]. The programof noncommutativegeometryis to adapt
the classical tools for dealing with the manifold M, such as K-theory, de Rham
cohomology,..., to the casewherethepair (CD~(M), C’ (Al)) is replaced by a
noncommutativesmoothalgebra.

3.2. Thereis alsoanalgebraiccharacterizationof vectorbundles[27, 38]. Given
a manifold M, we shall consider a (real or complex) vector bundle E -— Al; we
shalldenoteby 1(E) the spaceof smoothsections.We view it as a right A-
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modulein the obviousway.

Definition. A right module P for an algebraA is calledprojectiveif it hasthe
following lifting property:given a surjectivehomomorphismir: B —+ C of right
A-modules,anyhomomorphismf: P —p c can be lifted to a homomorphism
f: P —~ B with m o f = f. This is clearlythe casefor a free module (just define
f on asetof generators),andalsowheneverthereis anothermoduleQ suchthat
P ~ Q is free.The latter turns out to bethe generalcase:a moduleis projective
iff it is adirect summandof afree module.(Any moduleis thequotientof some
free moduleF, andthe projectivepropertyallows us to split the quotientmap

F; i.e., therewill existK:P —+ F suchthat � OK = idp.) We sayP is
offinite type if it is finitely generated.A projectivemoduleof finite type (finite
projectivefor short) is thenan A-moduleP for which thereis an integerk and
anothermoduleQ sothatP ~ Q Ak.

We notethat if A hasan appropriatetopology,the quotientmap�: A” .‘ p
confersa naturaltopology on the finite projectivemoduleP.

Proposition3.1. TheC°°(M)-module1(E) is finite projective.

Proof It is clearthat if E is atrivial vectorbundleof rankk,so thatE Mx
0k

(for a complexvectorbundle,say), then1(E) is just the free module A”. J~
general,it is enoughto identify an integern andmapsK:T(E) —* A~,�:A~
1(E) sothat� OK = idr(E). Thenthe imageof the idempotentp = K o� is the
desireddirectsummand.Let U1, 1 < i < q, beanopentrivializing coveringof the
compactmanifoldM; wecan representan elementof F(E) by q differentiable
mapss: U~—i C” satisfyingthe compatibilityconditions

s1(x) = >gjj(x)sj(x) on U,n U~ (3.1)

(wherethe g11 arethe transitionfunctionsof E) andthe obviousmoduleoper-
ation.

Let h,, 1 < i < q, denotea partition of unity subordinateto the covering
{U,}. Set 1 := h,(h~+ + h~Y

112then l~,1 < i ~ q, is also a partition
of unity subordinateto {U,}. Set now n = kq and view R~as R” ~ ~ Rk
(q summands).DefineK,� by

K(Si,...,5q) := (liSi,...,lqSq),

.,tq) : ~ . .,~q) with s~= >~gjrlrtr. (3.2)

Clearly, � 0 K = idr(E). Notethat compactnessis decisivefor this argument.E
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Theconverseproblemisto reconstruct,from agivenfinite projectivemodule,
a vectorbundlewhosemoduleof sectionscoincideswith the given one. This
reconstructionis effectedby the Serre—Swantheorem [381.

Theorem3.2 (Serre—Swan). An C~(M)-moduleP is isomorphicto a module
oftheform 1(E) iff it is finite projective.

Proof The “only if” part is proposition3.1. Supposenow thatP is finite pro-
jective, i.e., a direct summandof a free,finitely generatedC°~(M)-module F.
Therewill bean idempotentendomorphismf: F —p F with P = im f. Now if
k is the dimensionof F, we haveF = 1(E), whereE is atrivial vectorbundle
of rankk.

Since f is a module map, we have f(sh) = f(s)h for h e C~(M).If
x eM, andI~is the idealof functionsh E C~(M) suchthat h (x) = 0, then f
preservesthe submoduleF(E)I~.Sinces ~—* s (x) inducesa linear isomorphism
of F (E ) /1(E)I~onto the fibre E~,we havef (s)(x) E E~for all s e I (E),
andp: E —+ E : s(x) ~—* f (s)(x) definesa bundlehomomorphismsatisfying
f(s) = p Os.Sincef2 = f, we clearlyhavep2 = p.

If dimp(E~)= r, thenwecanfind r linearly independentsmoothlocal sec-
tions s

1,...,s~of E —p M nearx ~ M such thatps1(x) = s~(x)for eachj.
Hence,P~i,•~. ,P

5r are linearly independentin a neighbourhoodU of x, so
dimp (Er) ~ r for y E U. The sameargumentapplied to the idempotent
(1 — p):E —~ E shows that dim(1 — p)(E~)> k — r for y nearx. Thus
x ~ dimp(E~)is locally constant,and so E’ = p(E) is the total spaceof
a vectorbundleE’ —~ M with fibresp(Er), for which E = E’ + kerp.Fromthe
definitionof E’, oneseesthat1(E’) = {p o s : s ~ 1(E) } = imf = P. ~

3.3. TheGelfand—Naimarktheoremindicatesthata differentiablemanifoldM
is describedentirely by the commutative*-algebraC~(M).In general,a non-
commutativespacewill be given by ageneralsmoothalgebraA. We shallwork
with unital algebraswheneverfeasible.

We shallbe using systematicallytwo paradigmaticexamples,which are of
direct interestfor the applicationto particlephysics:the exampleof a compact
smooth(even-dimensional,spin’~)manifold,whereA : = C~(M) andM (A) =

M, andthe following:

Example. A two-point set,which candescribedby the algebraC2 = C + C, with
the usual operationsworking componentwise.We haveM = {q

1,q2}, where
qi(z1,z2) = z1 andq2(z1,z2)= z2.
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3.4. A right (left) A-moduleL is acomplexvectorspaceon whichA actson the
right (left). Whentensor-multiplyingmodulesover A, we shall multiply right
modulesby bimodulesin orderto get right modules,bimodulesby left modules
in order to get left modules,and so on. For instance,the tensorproductof a
right moduleL1 by abimodule£2 is aright moduleL~®~. L~generatedby the
set {si ® s~: s1 e £1, s2 E £2 } with the relations

s1a®s2—s1®as2=0 foranyaEA. (3.3)

A remark on notation: the symbol ®, whenemployedto denotetensorproduct
of spaces,will meanthe usual tensorproductover the complexnumbers;we
write ®A to denoteproductoveran algebraA, in order to avoid anyconfusion.

If L~,£2 are,say,right modules,weshall considerEndA(Li, £2), the spaceof
C-linear mapsA from £1 into £2 satisfyingA(sa) = A(s)a for a E A, s e Li.
(We shall speakof “A-linear maps” in this case.) In particular, EndA(L) : =
EndA(L,L)andL’ := EndA(E,A).

Recall that L is a finite projectiveright moduleoverA iff thereexistm E

andp E Amxm, such that p
2 = p andL = pAm. In view of the Serre—Swan

theorem,we shall call such amodulea vectorbundleover A. If p canbe taken
to be the identity, then L is a trivial vectorbundle.Note that the elementsof
EndA(L) arematricesv e ~mxm satisfyingpv= vp.

Example1. Considerthe spaceof smoothsectionsL = 1(E) ofa smoothfinite-
dimensionalvectorbundleEovera compactsmooth(even-dimensional,spin’)
manifoldM.

Example2. TakeL = C~’SC”. Notethat if k ~ 1, then£ is not trivial. (If k > 1,

takep= lk~P’E (C~C)®C”>~” CkXk~Ckxkwherep’ = ll~°k—l.)

3.5. Definition. We shallconsiderhermitian vectorbundles.This meansthatwe
havea sesquilinearmap (• I .): £ x L —~ A suchthat:

(i) (sa tb) = a*(s I t)b fors,t EL, a,b E A;
(ii) (s t)* = (t Is) in Afors,t EL;
(iii) (s s) E A is positivefor all s EL and (s s) = 0 forcess = 0.

Proposition 3.3. HermitianvectorbundlesareoftheformpAtm withp self-adjoint.

Proof Thereis an obvioushermitianstructureon the trivial vectorbundleAm:
ifs = (ai,. . .,a~),t = (b

1, . . . ,b~),define (sit) := ~ ab1. IfL = p~
tmis

asubmoduleof Atm, let L-~-: = { u E Atm: (u is) = 0 for s E £ }. Since (uaIs) =

a*(uIs),LJ~isalsoanA~module.IfuEAm,then(t_p*tIs)= (tls—ps),so
we seethat L~1~= (1 — ~* )Am. SinceAtm = pAtm ~ (1 — p ) Atm as adirect sumof
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modules,the operation(i) restrictsto ahermitianstructureon pAtm iff this is
an orthogonaldirect sum, i.e., iff 1 — p~= 1 — p.

We have usedthe fact that (p*t I s) = (tips) for s,t E Atm and p E

Atm>’m. To checkthis, noticethatps = (~
1p~a1,.. . , ~ andthatp*t =

(>
1k (p,~) * bk,... >~(P~) * bk), so the desiredidentity reducesto the usualma-

trix calculation.

The unitary groupUm(A) ofa *-algebraA is { u E A’0>”1 : uu~= u~u= 1 }.
More generally,for hermitianvectorbundleswe canconsiderthe groupU (L)

of gaugetransformationsof £, given by { u E EndA(L) : uu’~= u*u = 1 }.

Example 1. It is clearthat Hilbert structuresover vectorbundlesgive rise to
hermitian forms over the spaceof sections.It is alsoclear that Urn (C~(M))

is isomorphicto the group of mapsC°~(M, U(m)). More generally,it is seen
that our group of gaugetransformationsis identified with the group of gauge
transformations“of the secondkind” for thebundlewith structuregroupU(m),
in the usualsense.

Example2. We cantake ((si,s2) I (t
1,t~)) = (s~t1,s~t2).The group of gauge

transformationsis U (k) x U (1).

4. Noncommutativegeometry:forms and connections

4.1. We now want to find a substitutefor the de Rhamcomplexin noncom-
mutative geometry.We approachthis par le biais of the following universal
problem [7, 28]: GivenanyderivationD of the unital algebraA into a bimod-
ule £, find an injection anda derivationd of A into a (graded)differential
algebraQA suchthat thereis auniquebimodulemorphismcu: QA —* £ with
D = o d. Also, anyhomomorphismof A into the degreezerosubalgebraof a
differentialalgebramustbe lifted to ahomomorphismof differentialalgebras.

It is plausiblethat suchan algebracanbethoughtof as a free algebragener-
ated by symbols{a,da : a E A} subject to the relationsdl = 0, d(aoai) —

da0ai — a0da1 = 0. The latter would allow one to write elementsof QA as
linear combinationsof monomialsof the form a0da1 da0.Therelations

d(aodai. . •da~)= da0da1. ‘dan, d(daodai . da,~)= 0 (4.1)

areequivalentto the requirementthat d
2 = 0.

4.2. The actual constructionof QA turns out to follow rather conventional
lines [4]. All that is required is a stomachwhich can resist a starchydiet of
tensorproducts.
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IntroduceC~(A):= A®(~~l).We write C.(A) = A®1 for the chaincom-
plex. We havea boundaryoperator

b’(ao®a,®•~•®a~):= ~( )‘ao® ®aa ®•®a~. (4.2)

For example, b’(ao) = 0, b’(ao ® ai) = a0a1, b’(ao 0 a~® a2) = a0a1 0
a2 — a0 ® a1a2. Notice that b’: Ci (A) —~ Co(A) is just the multiplication map
m:A®A-÷A.

A short calculation verifies that b’
2 = 0. As usual,we introducethe spaces

of boundaries B~(A) and the set of cycles Z (A). We recall that a complex is
called “acyclic” (indicatedhereby the superscripta) if all thehomologygroups
arezero,with the possibleexceptionof H

0. It can beseenthatthe homologyof
(C.(A), b’) is entirely trivial by considering the map of degree 1:

(4.3)

and computing

sb’(ao®•~®a~) =~(—)‘l®a0®•••®a,a1~1®•~•®a0, (4.4)

sob’s+ sb’ = id; i.e.,s is a “chainhomotopy”betweenid and0, and(C.(A), b’)
is acyclic. Explicitly: if b’a = 0, thena = b’(sa), so every n-cocycle is an n-
coboundary.

4.3. Wenowintroducethe A-bimodule

Q
1A:=ker(m:A®A-÷A)

=ker(b’:C
1(A) —~ C~(A))

=Z~(A) = B~(A). (4.5)

The fact thatQ’ A = Z~(A) = B~(A) meansthat thefollowing two sequences
are exact:

1 i

0—*Q A—+A®A-—-*A-----*0,
~ (4.6)

Herethe injection i and the surjection j givethe canonicalfactorizationof the
mapb’ = m® id - id Om:A® A® A —~ A® A, i.e., ij = m® id — id ®m. Thus
Q‘A is the cokernelof b’: C3(A) —~ C2 (A), so any bimodule homomorphism
f: A ® A ® A —~ M such that fb’ = 0 factors through j, i.e., f = f’j for a
unique f’: Q’A —p M.
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Define next d: A —~ Q’ A by da : = 1 o a — a ® 1. NowQ’ A is an A-bimodule
under the obvious recipe: a’ (>I~xk 0 Yk )a” : = >k a’xk 0 yka”. Wealso have

d(ab) = l®ab—ab®l = a®b—abol + 1®ab—a®b = adb+dab. (4.7)

Clearly dl = 0. Thus d:A —+ Q1A is a derivation.
Now suppose £ is any A-bimodule and let D: A —~ £ be a derivation, i.e.,

an additive map which kills 1 and verifies D (ab) = Da b + a Db. Define an
A-bimodulehomomorphismD: AoA0A —‘ £ : a®h®c F-* a Db c. Wecompute:

Db’(a
0®a1 ®a2®a3)

= D(aoa1 ®a2®a3 —a0oa1a2oa3+ a0®a1 ®a2a3)

= a0(a1 Da2 — D(aia2) + Dai a2)a3 = 0. (4.8)

Thus there is a unique A-bimodule map ~:Q A —* £ with D = çuj. So we have
that ~(a0a, ® a2 — a0 ® a1a2) = a0Da, a2 hence (—ç~)(da)= Da. We have
thus establishedthe universalityof (QiA,d).

4.4. We now wishto extendthe derivationd: A —~ QiA to a differentialgraded
algebra QA with Q°A:= A with an additive differential d:Q

0A—

commutative in the standard graded sense:

d(a/3) = da/3+ ~ (4.9)

for a E Q” (A), ,13 E Q’A, the casen = 0 beingthe original derivationproperty
of d; andsuchthat d2 = 0.

ThisalgebraQ’A shouldbe“universal” in the following sense:if (R’, ó) is an-
otherdifferentialgradedalgebra,anyalgebrahomomorphism~v:A —~ R° should
extendto an algebrahomomorphismof degreezero ‘u: QA —~ R’ intertwining
the differentialsd and ~. Ofcourse,the algebraproductin A andthe derivation
d mustdeterminethe productin Q’A.

Introduce~ : = A/C. ThenweremarkthatQ1A = AoAby theidentification
a

0® a1 ~ a0da1. Here a1 = a1 + Cl in ~4,but of course da1 is unambiguous
since dl = 0. If c E A, then c(a0 ® a,) ~ ca0da,, while

(a0 0 a1 )c =: a0 0 (a,cr — a0a1®

aod(a,c) — a0a1 dc = a0da1 c, (4.10)

so this correspondence is a bimodule isomorphism.
NextweputQ

2A:=Q’A0AQ’A=(A®A)®A(A®A)=A®A®A.
More generally, we define Q0A := Q’A®A Q’A®A ‘‘‘ ®A Q’A (n times), so
that Q“A = A ® A®~.In other words, we take the tensor algebra over A, but we
quotientout the scalartermsexceptin degreezero;this is what makesd2 = 0,
yielding a gradeddifferential algebra.

The differentiald: A 0 A®” —~ A 0 4®(n+ ~ is given simply by the shift

(4.11)
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Since I = 0, we get d2 = 0 at once.Evidently, startingfrom degreezero and
applyingd repeatedlygives

a
0®a1o.~®a0=a0da1~da0. (4.12)

Next we make QA an A-bimodule. The left module property is immediate:

a’(a0da,....da0) = (a’ao)da,...da~. (4.13)

To get the right module property, one uses the postulated derivation property
dab = d (ab) — a db to pull the elementsof A through to the left:

(aoda,da0)bo

= aoda,..da0_1d(a0bo)—aoda,.da0_,a0db0=

= (—)~a0a,da2.••da0db0

+ ~~fliadad(aa)dadb

+aodai~~~da0_id(a~bo). (4.14)

Lastly, we define (aoda1 ...da~)(b0db,••dbm) := ((aoda, ...da~)b0)db,x
db~,so that QA becomes a graded algebra, as required.

Noticethatd(a0 da1 . . . da0) = da0da1 . . . da0by (4.11)and (4.12).Wealso
have the useful formula:

a0 [d,a,] ... [d,a0]l = a0da, . . ~da,,, (4.15)

wherethe a1 on the left handsideareregardedas left multiplicationoperators.
This is easily verified by induction on n: note that [d, a~11 = da0—a0dl = dan,
and [d,a~_,]da0 = d(a~1da0)— a0_,d(da0)= da~_,da0.

4.5. If A is an involutivealgebra,QA is madean involutive algebraby

(aodai...dan)*:=da~...da~a~. (4.16)

One checks, using (4.14), that (aoda, . . da,,)~telescopesto a0da,.. ~da0.
From (4.14), it is also easy to check that (a0 da, .. . da0 bo)* = b~da~. . . da~a~.
Thus we have w~= wand (w~j)

t= ~)*w*for w,~E QA, as required. Note
that if a E Q’A, then (da)* = _da*.

4.6. For later use, we give here a few simple identities for the differentials of
idempotents. Suppose that p2 = p in A”>”’. Wehave dp = d(p2) = pdp +
dp p in Q’ A~>(~~hence p dp = p2 dp + p dpp, so that p dp p = 0. Thus also
p dp dp = p dp (p dp + dpp) = p dp dpp = dp dp p in Q2A”>”. In summary:

pdpp=0, pdpdp=dpdpp, dpp=(1—p)dp. (4.17)
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4. 7. We examinewhat the generalconstructionyields for our two main exam-
ples,the algebraC~’°(M) andthe two-point space.

Example1. For A = C°°(M), we identify A®” = C~(M x xM). 1ff E A.
thendf(xi,x2)=(l®f—f®l)(x1,x2)=f(x2)—f(x,).ThusQ’Ais
identified with the set of functionsof two variablesvanishingon the diagonal.
More generally,Q”A is identified with the set of functionsof n + 1 variables
vanishingon contiguousdiagonals.The differential is given by:

n+i

df(x, x0~1) := ~( )k~~if(x ,...,xkl,xk+1 ,,~,). (4.18)
k=i

The left andright actionsof A on Q~Aaregiven by:

(gf)(x1 c0~1):=g(x1)f(x, x0+1).

(fg) (x1, . .. ,x0+1) := f (x, ,...,x0~, )g(x0~1). (4.19)

Theproductof an in-form f andan n-form h is:

~rn~n~i). (4.20)

Finally, the involution is:

f*(xi x+i):_f(x+, x,)
t (4.21)

Example 2. TakeA = C2 C+ C. Notefirst thatQC is trivial. ForA = C2 =

C+C, we haveA C, wherewecanidentify the classof (w
1, w2) with w1 — w2.

It is clear that Q’ (C
2) = C2 0 C = C2 moregenerally,Q” (C2) = C2 for anyn.

The differential on Q°C2and Q’ C2 is given by:

d(a,,a
2) = (a2—a1,a1 —a2) fora = (a,,a2) EQ°C

2,

d(b,
2,b21) = (b21 + b12,b12+ b21) forb = (b12,b21)EQ’C

2. (4.22)

Herewe areadoptingaconvenientmnemonicdevice,basedon thedefinitionof
Q1A as asubspaceof A oA. Weregard the elements of each Qk C2 as indexed
pairs:a = (a,,a

2) E Q°C
2,b= (b,

2,b21)E Q
1C2,c = (c,

21,c212)E Q

2C2, and
so on,subjectto therule that adjacent indices should be unequal. This is indeed
a particular case of the previous example, with M = {qi, q2} just a two-point
space.

It is convenientto introducethe “finite difference” Ja : = a
1 — a2, so that

da = 4a(—l,l)foraeQ°C
2.

The left and right A-actions on Q’ A are given by

(a,, a
2) (b12,b21 ) = (a,b,2, a2b2, ),

(b,2,b21)(a,,a2) = (b12a2,b2ia,), foraeA, bEQ’A. (4.23)

They are not the same, even though A is commutative. The last equality is
checked by taking b = a’da”, so ba = a’da”a = a’d(a”a) — a’a”da =
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(—a~z1a”a2,a~Aa”a1)= (b,2a2,b21a1),as claimed. A similar computation
gives (b,2,b21)* = (—b~,,—b~2)inQ’(C

2).
It is easilyseenthatada’da” = (a

1zla’Aa”,a2Aa’Aa”) in Q
2(A);a general

elementof Q2(A) is a sumof these.The left andright A-actionson Q2A are
thusgiven by

(a,,a
2)(c,21,c212)= (aic,21,a2c212),

(c,21,c212)(a1,a2) = (c,21a,,c212a2), for a E A, c E Q
2A. (4.24)

Finally, (c,
21,c212)* = (c~21,c~,2)forcE Q

2(A).
With the index notation we are using here (and which will eventuallygen-

eralize to the differential algebraunderlyingthe StandardModel), one sees
that all the algebraic laws follow by matchingadjacentindices: for example,
(ab),~= a

1b,~, (ba),J = b,1a~,(da)11 = a1 — a1, (b*)11 := —b7,, (ac)IJk =

aEcSJk, (ca),Jk = c~3kak,and (c*)jjk = c~11.As exerciseswe leave the identities
(bb’)11k = bjb~kand (db)IJk = bfk — b,k + b1.

We introduceanotheruseful notational convention.Let p = (1,0) a self-
adjoint idempotentin A. Then dp = (—1, 1). In Q’ A onehasthe basis {p dp,
(1 —p)dp} = {(—1,0), (0,l)}. In particular,we may rewrite the derivation
rule for a E Q°C

2as da = Aa(pdp + (1 — p) dp).

4.8. The readerwill probablyfeel entitled to know what the relationis, in the
commutativecaseA = C°°(M), betweenQA and the usual algebraof dif-
ferentialforms LA = 1(AST*M), besidesthe fact that there is a covering
homomorphismfrom the first to the second(thekernelof this“universal” map
is ratherlarge).Roughly,theansweris asfollows: aHochschildtypecomplexcan
bedefinedon QA suchthat the correspondinghomologyclassescanbeidenti-
fied with the differential forms. This is donein the spirit of cyclic cohomology,
which we will now briefly examine.

We returnto the chaincomplexC. (A) = A®~~but wereplacetheboundary
operatorb’ of (4.2) by:

+ (—l)”a
0a0oa, ®~~~®a0_1. (4.25)

Forexample,b(a0oa,) = aoa,—a1a0,b(a0®a1®a2)= a0a1®a2—a0®
a1a2+ a2a0 0 a1. Onechecksthat b

2 = 0. Thehomologyof this complex [4]
is called theHochschildhomologyH. (A, A). [This notation is used because the
last term in (4.25) and the first term in (4.2) involve the productsa

0a0and
a0a1, so one can replacethe lowest-degreecopy of A by any A-bimodule M,
yielding a homologyH. (A, M).]

Thechainsoftheforma= a0®~~~®l®®a0withak = 1 forsomek>0,
generatea subcomplexD.A since a e D0A entailsba E D0_1A.From (4.3)
and (4.25) one obtainssb(a) + bs(a) = a for a E D0A with a0 = 1; by
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composings with a cyclic permutationa of the factors so that a(a),, = 1,
we obtain a chainhomotopys’ satisfyings’b(a) + bs’(a) = a for a E D,,A,
n > 0. Thereforethis subcomplexis acyclic, i.e., H0(D.A,b) = 0 for n > 0.
ThequotientbimoduleCOA/DOAcanbe identifiedwith A® 4®” = Q” (A) for
n > 0. Sowe canthink of (4.25) as defininga boundaryoperatoron thegraded
algebraQA. We canthereforerewrite it as

b(a0da,.’.da,,):=a0a1da2..da,,

+ ~(—)‘aodai . •.~(~~1)•~da,,

+ (—l)”a,,a0da,.da~_1. (4.26)

A comparisonwith (4.14) makesit clearthat this formula may be rewritten
morecompactlyas b(wda) = (—)“[w,al for wE Q”(A).

4.9. Severalimportantquantitiesin noncommutativegeometryareHochschild
cocycles.By definition, an n-cochainis an (n + 1)-linearfunctionalon A. This
is the samething as a linear form on A®(0+U, or an n-linear form on A with
values in the dual spaceA’. We mention that A’ is an A-bimodule,wherewe
put (a~~ib)(c):= yi(bca) for ~ E A’. The coboundaryoperator,alsocalled b,
is givenby transposing(4.25):

+ (—l)’1~’~(a~~1a0 a,,). (4.27)

The cohomologyof this complex is the Hochschildcohomology,convention-
ally denotedby H~(A, A’) (the first andlasttermsof (4.27) usethe bimodule
propertyof A’).

Suppose that ço is a Hochschild cochain such that ~ (a0,... , a,,) = 0 whenever
ak = I for some k = 1,2,. . . , n; wemay call ç~a reducedHochschildcochain[41.

Thenthereis a naturallyassociatedlinear mapç~:Q“A —~ C givenby

a,,). (4.28)

It is clear from (4.27) that the reducedcochainsform a subcomplexof the
Hochschildcomplex(sincebço is reducedwhenever~‘pis). Whetheroneusesthe
reduced complex or not is a matter of convenience, since the full Hochschild
complex for A can be identified with the reducedcomplexfor the augmented
algebra A~with the degreesof the chainsshiftedby one [14].

If we restrictto continuousmultilinear functionals,andtakeA = C~(M),
thentheantisymmetrizationofa reducedcochaint’p with respectto all arguments
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but the first yields a de Rham current C~:

(C91,aoda,A’..Ada0) := ~ sign(a)~3(ao,a0(1),...,a0(,,)). (4.29)
C ES,,

The notation d means simply the ordinary exterior derivation of forms; wewrite
it thusto distinguishit from the universald, which in the commutativecaseis
the finite differenceoperator(4.18).

Onechecksthatantisymmetrizingtakescocyclesto cocyclesandkills cobound-
aries.Thisyieldsthe aforementionedmapfrom Hochschildcohomologyclasses
to deRhamcurrents.It can beverified [7] thatthismapis an isomorphism.An
isomorphismtheorem,which in a senseis a dual result to the above,is proved
in ref. [24].

4.10. A Hochschildzero-cocycle~is atrace:tEA’ andbt(ao,a1) = t(aoa,) —

r(a,ao) = 0. To extendthe tracepropertyto higherorders,wesayan n-cochain
~ is cyclic if 2~= ~, where

)~ç9(a0,. . . , a,,):= (— )“ço (a,,,a0, . . . , a,,_,). (4.30)

[The (—)“ is the sign of the cyclic permutation.]For a cyclic one-cocyclewe
then have

ço(a0,a,) = —ç9(a,,ao), ç9(aoa,,a2)—~,(ao,a1a2)+~,(a2ao,a1)= 0. (4.31)

Clearly, acyclic one-coboundaryis a linearfunction of the commutator:

= b~(ao,ai)= W([ao,a,]). (4.32)

If ço is a reducedcyclic cocycle,thenfrom (4.14) and (4.28) onecancheck
that

ç~(a0da1..•da,,b0db1...db~) = (—)“
mç~(bodb

1.db~a0da1...da,,).
(4.33)

In otherwords,ç~is a gradedtraceon the gradedalgebraQA.
Let us also introduce the cyclic antisymmetrizerN : = id +~+ ... + 2”.

From (4.27) and (4.30)we find, afterabriefstruggle,thatbN = Nb’, whereb’
denotesthe transposeof (4.2). ClearlyanyNço is cyclic, since2N = N. On the
otherhand,if2~ = ç~,thenN((n + l)_1~)= ~, so thateverycyclic cochain
lies in the imageof N.

We denotethe spaceof cyclic n-cochainsby CC” (A) : = ker(2— id) = im N.
The identitybN = Nb’ shows that b preserves CC”(A), so that (CC’(A),b)
is a subcomplexof the Hochschildcochaincomplex.

A cyclic cocycleis a cyclic cochainsatisfyingbço = 0. Every cyclic cocycleis
in particular aHochschildcocycle,but not everyHochschildcoboundaryby.i
which is cyclic is a cyclic coboundary,since~i might not itself be cyclic. Thus
the cycliccohomologyof A, which wewill denoteby HC(A), is differentfrom
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theHochschildcohomology.Both cohomologiesplay a role in the calculationof
Yang—Mills functionals,as wewill see.

4.11. Definition. Let S be ahermitianvectorbundleovera *-algebraA. A (uni-

versal)connectionon S is a linear mapV:L —~ £ ®A Q’A suchthat

V(sa) = (Vs)a+s®da, forallsEL, aEA; (4.34)

this connectionis compatiblewith the hermitianstructureif

d(s is’) = (Vs is’) + (s i Vs’), for all s,s’ E 5. (4.35)

Note that£ OA Q’ A is a right A-module.

Compatibleconnectionsalwaysexist. If S Atm is free, then S ®A Q’ A
(Q’ A)tm,andd extendedcomponentwiseto A’0 definesacompatibleconnection
on S.

Now, considerS pA’0, wherep is a self-adjointidempotentin A”1>”0. Re-
garding£ as asubmoduleof A”, we seethatpddefinesacompatibleconnection
on 5: ifs = (s,, . . . ,S,,,) = (s,), ps = (p~s1),thenpd (sa) = (p~d(s1a)) =

(p(ds1)a+p!sjda) = (pds)a+ sdawheneverps= .v. Moreover,d(sit) =

d(~1s~t~)= >1ds~t~+s7dt~= (dSipt) + (psjdt) = (pdsit) + (sipdt).
If V,, V2 aretwo connectionsonE,thenV1 — V2 =: a E EfldA(S,£ ®A Q‘A).

If bothconnectionsarecompatible,thencv is skew-adjoint.Thusanycompatible
connectionis of theform V = pd + a with cv~= —cv. If we identify S pA’0,
~ = isp = pa = pap.
Conversely,given such a universalone-formcv, the map V : = pd + a is indeed
a compatibleconnection:

V(sa) := pd(sa) + cvsa = pdsa+ cvsa + psda= (Vs)a + sda, (4.36)

whereagainps = s is used.

4.12. We now extend V to a derivationof S-valuedforms, V: S ®A QA —,

S ®A Q~’A, by requiring

V(sOw) = (Vs)®w+s®dw, VSES, wEQA. (4.37)

Clearly, this extensionis unique.Moreover, if w is homogeneous,we get from

(4.9)
V((s®w)s~)= V(s0wij) = V(sOw)ii + (_)degw(S®W)d~. (4.38)

We cannow alsodefinethe squareO~’: = V
2, usually abbreviated 0, andcall

it the curvatureof V.
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We computethe generalform for the curvature:

0(s) = pd(p ds+ as) + cx(p ds + as)

= pdpds + pdcxs—pads+ apds+ a2s

= (pdpdp+pdcip+a2)s, (4.39)

wherewe haveused (4.17).The resultof the computationshowsthat, in con-
tradistinctionto V, the curvatureis an A-linear operator.Onemaythenregard
0 as an elementof EndA(5) ®A Q2A,which is to say,as amatrix of universal
two-formssatisfying0 = pOp.

There is anaturalactionof the groupof gaugetransformationsU(S) on the
spaceof compatibleconnections,givenby

y,,(V) := uVu* :s ‘—* uV(u*s), (4.40)

with curvatureu0u*. IfS = pAtm andV = pd + a, theny~(V)s= u(pd +
a)u*s = pud(u*s) + uau*s = (pd + yu(a))s,wherewe definethe actionof
U(S) on matricesof one-formsto be

Yu(is) := udu* + uau*. (4.41)

Example1. IfS = A, call a = Vi; thenclearlyVf = df + af and0 = dcx+ a2.
Evenin thisalmosttrivial commutativecaseA = C~(M), wehaveadifference
with respectto the classicalexpression,as now a2 ~ 0.

Example 2. WhenS = A = C2, thetwo-point space,a compatibleconnection
is specifiedby an elementof Q’C2 of the form a = (q~*— l,~— 1) = (1—
/~*)pdp+ ~ 1)(i—p)dp. (Thereasonwewriteq~—1 ratherthan~E Cwill

becomeclear later.) We havefor the curvature,using (4.17):

da+ a~= —{(q5— 1) + (çb— i)* + ic~—112}dp dp = (1 —I~I2)dpdp.(4.42)

The gaugegroup U (1) x U (1) actionon connectionsis found from (4.41).
Sinceudu* = (1— u

1u~)pdp + (u~u2 — i)(i —p)dp, weobtainyu(a) = (1—
u1u~q~

t)pdp + (u~u
2q~—1) (1 —p) dp.Thusthegaugeactionisjustmultiplication

of q~by u~u2.

5. Noncommutativegeometry: K-cycles

5.1. In this sectionwe pull thepreviousstrandstogether.We introducethebasic
objectof noncommutativeintegrodifferentialcalculus,the K-cycle.

Definition. A K-cycle (7~,D) on the *-algebraA consistsof a unitary represen-
tation of A on a Hilbert spacefl, togetherwith an (unbounded)self-adjoint
operatorD on 7-1 with compactresolvent,such that [D, a] is boundedfor all
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a E A. In many cases,N is a Z2-graded Hilbert space, equipped with a grading
operatorF suchthat12 = 1, A acts on N by even operators, and D is an odd
operator,i.e., aT = Ta for a E A, andDl = —ID.

To show the usefulnessof this definition, we takeup the importantcommu-
tative exampleof the Dirac operatoron a compactspinc manifold. The Dirac
operatoris importantfor severalreasons,as we shall see.Firstly, as a distin-
guishedsquarerootof the Laplacian,in somesense(to be madeclearerbelow)
it incorporatestheentireRiemanniangeometryof theunderlyingmanifold.Sec-
ondly, as afirst-order elliptic pseudodifferentialoperator,it providesa bridge
to index theoryandthusto manifold invariants,suchasthe Cherncharacter,so
it is of manifestimportancefor gauge-invariantphenomena.Thirdly, it deter-
minesaspecialcyclic cocycle, which indeedgives the dualobject to the Chern
character[7]. If aDiracoperatoris available,classicalgaugetheorycanbelifted
to the purely operatorlevel, ripe for generalization.

We take A = C°~(M).Let N := L
2(S), the spaceof square integrable

sectionsof the irreduciblespinor bundleS over M, andD the corresponding
Dirac operator(for precisedefinitions, seetheappendix).RecallthatA acts on
N by multiplicationoperators,i.e., multiplication by scalarson eachfibre of S.

Lemma 5.1. Thedenselydefinedoperator [D, a] is bounded.

Proof The operator[D, a] shouldbe viewedas a quadratic form, its bounded-
nessmeaningthat I(Ds’ I as) — ~a*s/ I Ds)~~ Cilsil ils’ii for all sectionss,s’ in

the domain of D. We introducethe Lipschitznorm iiaiiL1P : = SUPp~qa(p) —

a(q)~/d(p,q) with respectto the geodesicdistance

d(p,q) := infl~(p,q), (5.1)

wherel~(p,q) is the length of the path y from p to q.
If a E COG (M), the Lipschitznorm of a is the essentialsupremumiidaii=;

recall thatda E £‘(M) = I ( T*M) denotesthe ordinarydifferentialof a. We
remark thatD(as) = aDs + c(da)s,as is clear from propositionA.7. Thus
[D,a] is nothing but Clifford multiplication by da, i.e., the action of c(da)
on L2(S). Theoperatornorm of c(da) equalsiidaiiOG. Hence:

[D, a] ~i= Iidaii= = iiaiiL~P. (5.2)

Seealsoref. [3, proposition3.38]. E

We notethat the algebraof Lipschitz functionsis uniformly densein C(M).
The metric on M may also be recovered from the Dirac operator, as shown

by the following lemma[9].
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Lemma 5.2. Thegeodesicdistancebetweentwo pointsp, q ofM is givenby

d(p,q) = sup{Ia(p) —a(q)~: a E A, iI[D,a]II < 1 }. (5.3)

Proof It is clearthat d(p,q) is majorizedby the right handside of (5.3), by
taking a(q) : = d (p,q); this is a Lipschitz functionwith constant1, so that

II[D,a]II < 1. The converseinequality follows from (5.2). E

The formula (5.3) for the distanceis dual to the original formula (5.1), in
that, insteadof involving functionsfrom ~ to M, it involves functionsfrom
M to E11. In the caseof discreteor noncommutativespacesthereis a scarcityof
arcs,but thereareplenty of “functions”, i.e., the elementsof A itself. The right
handsideof (5.3) definesalsoa distanceon the spaceof statesof a smooth
algebra (equippedwith a K-cycle), so it admitsanaturalnoncommutativegen-
eralization.Notefinally that (5.1) is suspectfrom the pointof view of quantum
mechanicaloperationalism.

5.2. Another importantelementof Riemanniangeometryis the canonicalvol-
umemeasure:

jt(dx)=~~dx’A---Adx”, n=dimM. (5.4)

Theelliptic pseudodifferentialoperatorD hasafinite-dimensionalkernel. To
avoid the irrelevantcomplicationswhich ariseif this kernel is not zero (which
canbe dealt with, for instance,by addinga “massterm” [7]), we will adopt
from nowon the notationthatkerD = {0}, so thatD hasa boundedinverse.

We now recoverthemeasurefrom the Dirac K-cycle in the following way.

Theorem 5.3. For a E C°°(M):

Cflf a(x)/L(dx) = Tr~(aIDI”), (5.5)

wherethe constantC0 is givenby

(2ir)” __________

C2k = k! or C2k+i = (2k + 1)!!~

Proof This is aneasyconsequenceofthetracetheorem.Sincea E A isabounded
multiplicationoperator,aIDi” is apseudodifferentialoperatorof order—n. Its
principal symbol is just p_,,(x,ç~)= a(x)II~Il”,which reducesto the scalar
matrix a(x) (of rank 2L~~/2J= dimS~)on the cospherebundleII~II= 1. Thus
Tr~(aIDI”) = C0 fM a~z,with C0 = 2L0t

2iQ,,/n(2i~)”,which simplifies to the
statedvalues. E

Definition. A K-cycle is saidto ben~summableif 1DL’ E ~ (N).
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Equivalently,aK-cycleis n+ summableif DI —n belongsto the Dixmier ideal.
This is thecasein the commutativeexamplewehavebeenexamining,with n =

dim M, andso the orderof summabilitymaybe regardedas the dimensionof
the K-cycle (N,D). Indeed,from theorem2.3 wehave(1 + D2)’/2 E ~ (N),
sinceD2 = —A, and1DH’ = T(l + D2)’/2 with Tbounded.

5.3. Theavailabilityofa K-cycleallows usto projectfrom the algebraof univer-
sal formsQ’A to a moreusefulgradeddifferentialalgebra.It will transpirethat,
in the Riemanniancase,weneednot to go throughthe Hochschildcomplex,in
order to descendto the deRhamalgebra.

Proposition 5.4. GivenanyK-cycle(N,D) overan algebraA, thefollowingequal-
ity definesa *-representationofQA in N:

ir(a
0da, . . .da0) := i”a0 [D,a1] ... [D,a,,]. (5.6)

Proof That ir is ahomomorphismis evident,sincebothd and[D,.] arederiva-
tions on A. Also, since [D, a] = — [D, a*] by self-adjointnessof D, we get
t(a0da1. . da,,)~= 7r((a0da1. . .da,,)*), using (4.16).

However, the it homomorphismis not necessarilya differential one. If
~ a~[D,a~]is adenizenof ,r(Q’A), wewould like to defined~ a~[D, afl as

i~1[D,a~][D,a~];however,the same~1a~[D,a~] could be representedin

severalways using elementsof A, so the expression~ [D, a~][D,afl is po-
tentially ambiguous.Indeed,itb = 0 for b E QkA doesnot in general imply
m(db) = 0, so the ambiguitydoesoccur.

We prove this by asimplebut importantexample.Let h = ada— ~d(a
2) E

Q’A. In the Riemanniancommutativecase,mb is Clifford multiplication by
iada — ~id(a2); thus,tb = 0. However, it(db) = —c(da)c(da)= q(da,da)
� 0.

Weneed the following technical lemma.

Lemma 5.5. Let J
0 be the gradedtwo-sidedideal givenby J~: = { b E Q”A

irb = 0 }. ThenJ : = J0 + dJ0 is a gradeddifferential two-sidedideal ofQ’A.

Proof We must showthat J0 + dJ0 is still an ideal. Let b E jk bea homogeneous
elementof J. Write it as b = b, + db2,whereb1 E J~,b2 E J~

1.ForcE Q’A,
we obtain bc = b

1c — (~)“b2dc+ d(b2c). Since b1c — (_)kb2dcE Jo and
b2c E J0 also,weget bc E J. Thecomputationfor cb proceedssimilarly. Finally,
J is a differential ideal, as clearlydJ = dJ0 c J.
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Definition. Let (7-1,D) be a K-cycle over an algebraA. We define the graded
differentialalgebraof D-formson A as

Q~A:=~‘r(Q’A)/J. (5.7)

The canonicalprojectionfrom Q~(A) to Q~(A) will be written itD.

In orderto graspthe meaningof (5.7),we considerQ~A,for k = 0, 1,2.
— Clearly J0°= J°= {0}, soQBA = A as expected.
- Next, J’ = 10’ + dJ0°= J~,thus QJ~Ais the quotientof Q

1 by kent.
WhenA = C°°(M) andD is a Dirac operator,its elementsoperateby Clifford
multiplicationc(w) on spinors,wherew is a one-formi >~a~da~.

— Finally, J2 = J~+ dJ
0’. ThusQ~A it(Q

2A)/it(dJ~).More concretely,
noticethat thevectorspaceof operatorsof the form

{>I~[D,a~][D,afl :a~,a~EA, ~
1a~ [D,afl = 0}, (5.8)

form a subbimoduleof it (Q
2A), sincethe sideconditionentailsthe identities

a’(~
1[D,a~][D,a1]) =

(~1[D,a~][D,a~])a’= ~1[D,a~][D,a1a’] —>1[D,a’0afl[D,a’],(5.9)

whoserighthandsidesalsobelongto (5.8); in the secondcase,thisfollows simply
from >1(a~[D,a~a’]— a~~a~[D,a’])= (~1a~[D,a~])a’= 0. Therefore,an
elementof Q~Ais aclassof elementsof the form:

~1a~ [D,afl [D,afl, ~ E A, (5.10)
modulothe subbimodule(5.8).

The ambiguityin the definition of db for b E ir(Q’A) no longer arisesin the
contextof QJA.Moregenerally,we have

Q~A~m(Qk)/m(dJ~~). (5.11)

5.4. We now specializeagainto the commutativeRiemanniancase.Here, for
ao,...,ak E A,onehasir(a0da,..•dak) = i”aoc(da1•.•dak),wherethediffer-
entialsda~andtheir productsareconsideredas sectionsof the Clifford algebra
bundleCl(M).

Foreachx E M, andk = 0, 1,. . . , n, let C~denotethesubspaceoftheClifford
algebrafibreCl~ofCl(M) generatedby productsof atmostk cotangentvectors
in 7~M. Using the canonicalinnerproducton Cl~given by the traceof the
spin representation,wecanidentify A~T~Mwith the orthogonalcomplement
C~e Cr’. Let usdenotethe quotientmapfrom C~to A~7~Mby ak; we have

crk(Vi...Uk) =V1A•~•AVk, fOrVl,...,VkETM. (5.12)

Lemma 5.6. Let (7-1, D) be the Dirac K-cycleon the algebra C°°(M), andlet
k E ~. A pair ofoperators(A,,A2) on 7-1 is oftheformA, = ir(b), A2 = ,r(db)
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for someb E QkA iff thereexistsections5~,s~ofCk andC
1’ +1 respectively, such

that
A,x = c(s

1)x, A2x = c(s2)x, (5.13a)

idak(si) = ak+1(s2). (5.13b)

Proof If b = a0da1 . . da~,it is clearthat ir(b) = i”a0da, ‘ ‘dak E F(C”)
andit(db) = ilc~daodai. . .daj. E 1(C”~

1).In this case

idak(sl) = ik+idaoA...Adak = ak+1(s2).

Conversely,ifs, E I(C”) and~2 E I(C”~) satisfy idak(sl) = ak+i(s2),
thens

2isdeterminedbys,upto anambiguityin F(C” ).We maythereforesuppose
thats~= 0 andS2 E F(C”~’). Ifwe set b’ := (aodao— ~d(a~))da1 .. . da~1
E QkA wehaveit(b’) = 0, it(db’) = Iidaoli

2dai .. . ~ Sincetermsof the
latter typegenerateI(C”’ ) as a C°°(M)-module,we canfind bE QkA with

it(b) = 0 andit(db) equalto anygivenelementofF(C”~).

[We can give an exampleof the aboverelationsin physicists’ language.In
the trivial bundleS = A, aconnectionis definedby a universalone-formcv =

~a
1db1. SupposeitD(a) = A = A~dx’~.We will havethen it(cv) = y”A~.

We haveit(a
2) = A2 clearly, whereasitD(a)2 = A A A = 0. Moreover,it(da)

is certainly not dA. Writing dcx = ~ da
1 db1 andperforming the necessary

calculations,we get it(da) = ~F,~~y’~y”+ ~ + 8 . A where the scalar field
= —g” >a18,,O,~b~and8 A := 8VAV. We thushaveit(0) = it(da + a

2),

but only the first termof it (dcv) canbeidentifiedwith the “Maxwell form” dA.]
Wefinally recognize that Q~COG(M) is isomorphic to the de Rhamalgebra

5~(M) of everydayformsandthat the relationbetweenit (Q’A) andQ~Ain
this exampleis just the relationbetweenthe spaceof sectionsof the Clifford
algebra—wecan identify it (QkA) and I (Ck)—and the spaceof sectionsof
A~T* M. Indeed,the aboveproofshowsthat if s E F(Ck) with ak (s) = 0, then
s = it(db) for someb with itb = 0; in otherwords,

it(dJ
0~’)= c(kerak). (5.14)

It is also clear from (5.12) that if t E 1(C’), thenak+1(st) = ak(s) A a1(t)
in S~~+i’(M).Thus the symbol maps ak combineto yield an isomorphismof
graded algebras aD: Q~COG(M) 5~(M). This is also an isomorphism of
COG(M)-modules.We notethatwe cannotatthis stagesaythat aD is isometric,
sinceno hermitianstructurehasyetbeengiven on Q~A.

5.5. To introduce a hermitianstructureon Q~COG(M), weneedabasictechnical
lemma.
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Lemma 5.7. Let (7-1,D) beann~-summableK-cycleon A = C°°(M).If T E

it(Q~A)andSis a boundedoperatoron N, then

Tr~(STiDI~)= Tr~(SlDi0T). (5.15)

Proof The statementisthat S(T1DI0— IDi” T) E £1+ (N); sinceS is bounded
and£~is an ideal, wecan takeS = 1. Moreover,since

TIDI” — IDL”T = ~ IDir(TIDI_i — IDI1T)1D10+r+i,

we havejustto showthatTIDI’ — IDL’ T E ~ And it is enoughto showthis
forT = a or T = [D,a] with aE A.

Now multiplication by a, or Clifford multiplication by da, arepseudodiffer-
ential operatorsof order 0, whereasIDH’ is a pseudodifferentialoperatorof
order—1, its principal symbol being I i~~. From the symbolcalculus formu-
lae (2.4),ifP andQ areof ordersmandm’, then [P,Q] is of orderm+ m’— 1 at
most,sincethem+ m’ termof itscompletesymbolclearlycancels.So [iDi~, a]
and [IDL’, [D,a]], andmore generally [D, T] forTE it(Q”A), is of order—2
at most.ThereforeTIDI” — 1DI0T has order (—n — 1) atmost,soby the trace
theorem,its Dixmier tracevanishes.

Remark.Connesassertsin ref. [10, p. 206] that the conclusionof lemma5.7
holds for any n+..summableK-cycle. This is plausible,but we are not aware
of a proof at the moment.Therefore,we provisionallyproposethe following
definition.

Definition. An n+ -summableK-cycle (N,D) on analgebraA is tameif for any
T E it(Q’A) and SE .C(N), (5.15) holds.

From tamenessand the traciality of Tr~,the following three traces coincide
and define an inner product on it(Q”A):

(SIT) := Tr~(S~TIDI~)= Tr+(StiDI_0T) = Tr~(TIDI”S~). (5.16)

Let us write 7-1k for the Hubert spaceobtainedby completing it(Q”A) with
respectto thisinnerproduct.

For a E A and5, T E it(Q”A) we have

(aSIaT) = Tr+(TIDI0Sfa*a), (SaiTa) = Tr+(aa*StIDI~T). (5.17)

This saysthat the unitary group U(A) := {u E A: u*u = uu* = 1 } has
two commutingunitary representationsL andR on 7-1k, givenby left andright
multiplications.Now it(dJ~’) is a subbimoduleof it(Q”A), by the obvious
generalization of (5.9), so the unitary representations leave its closurein Nk
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invariant.Let P betheorthogonalprojectoron N
1’ whoserangeis theorthogonal

complementof it (dJ~’),anddefineNk : = PNk.ThenP commuteswith L (a)
andR(a) for a E U(A) andso for anya E A; thus

P(aTa’) = aP(T)a’ forTE 7-1k, a,a’ E A. (5.18)

Now the projectorP is just the continuousextensionto N1’ of the quotient
map from it (Q”A) to Q~A.Thus QJ~Ais identified with a densesubspace
of

7~1k•Moreover,theleft andright representationsof A on N
1’ reduceto algebra

representationson Nk, on accountof (5.18), which extendthe left and right
module actionsof A on QDkA.

Let usgo backtoQ~C°°(M). Fromnowon, in view of the applicationto the
StandardModel, wewill assumethat thedimensionn of M is even.If T E QkA
with it(T) = c(s),we havePit(T) = c(~~)in Nk,where~ is the componentof
s in I(C” e C”~).The tracetheoremnow gives

(Pit(T) I Pit(T))~k

= n ~~)0f tran(c(~)tc(~)IDI0)

= Jtr(c(~i)tc(~i))dx
I(~n+ 1)

M

(2it)”
12 [ — (2it)~/2 ~ 2d 5 19

= (n/2)! ~ ~ = (n/2)! ~ x. ( . )

The third equality follows from the formula for the traceof the spin repre-
sentation(A. 15); werecall that if the k-form ~ is written in local coordinates
as ~ = >K aKek, A ... A ekr and *~ denotesits Hodge dual, then ~ A *i~ =

(>K IaKI2)el ~ A e
0, which thus equals2f/

2tr(c(rj)tc(~))times the vol-
ume form on M. We adopt the usual notation of writing this multiple as the
squarednorm of ,j. We concludethat the innerproducton Nk givenby (5.16)
corresponds,underthe identificationaD, with thehermitianstructureon £ (M)
arisingfrom theRiemannianmetric.

5.6. We now turn to the exampleof the two-point spaceA = C2, andconstruct
K-cycles over this algebra.

TakeN = C” ~ C~’,with the action of A = C2 given by a(s,,s
2)

(a1s,,a2s2).We denoteby D the hermitianmatrix

D:= (°mi) (5.20)

wherem is any nonzeroN x N matrix. The gradingis given by F = (~2~).
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The diagonalactionof A is evenfor thisgrading.Onehas

D2 = (mim 0 (5.21)
\~ 0 mmt)

We compute:
(0 _mt\i[D,a] = i(a, —a

2) ~m 0 (5.22a)

2 2(mtm 0 \—[D,a] = (a, —a2) ~ ~ mmt)’ (5.22b)

so [D, a] Il
2 = ai_a

2I
2IImtmII,which,togetherwiththedistanceformula(5.3),

yields d(q
1,q2)= l/ilm~mil”

2.
TheK-cycle (N,D) is tame.Noticefirst that for afinite-dimensionalHilbert

space,the Dixmier trace is merely a multiple of the usual trace;we therefore
replaceTr+ by Tn. Moreover,the dimensionn of thisK-cycle is zero,sincethe
Dixmier ideal is £(N).

Supposewehaveaskewforma=(~*_1,~_1)=_(q~*_l)pdp+(q~_
1) (1 — p) dp in Q’ C2 = C2. Sincep = (1,0), we haveatonce:

/1 0’\ .(0 —m~

it(p) = ~ o)’ it(dp) = 1 ~m 0
(mtm 0 ‘\

it(dpdp) = k,,, o mmt)~ (5.23)

Therefore,
( 0 i(~*_l)mt

it(a) = k,.i(~—l)m 0 (5.24)

The curvatureof the universal connectiond + a on A is 0 = dcx + a2 =

(2— q~_q~*)dpdp— ~— fl2dpdp = (1— ii/’I2)dpdp, which projectsto

it(0) = (1— I~I2)it(dpdp)= (1— k5i2)D2. (5.25)

In this exampleit is infective,so it(QA) andQ~Acoincide.

6. Noncommutativegeometry:the action

6.1. Recall that any skew form a E Q’A determinesa universalconnection
V = d + a on the trivial bundleS = A, whosecurvatureis 0 := dcx + a2. Let
(N,D) beatameK-cycle on A. We thendefinethepre-Yang—Millsfunctional:

1(V) := Tr~(it(O)2lDl”). (6.1)

Then1(V) > 0, sinceit is the squareof the normof it(0) in 7-12, andmoreover
this functional is gaugeinvariant. To seethat, recall thatfor any u E U(A), the
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gaugetransformationYu actson the curvature0 by Yu(O) = u0u~,and so by

tameness
I(y~(V)) = Tr+(it(O)2u*iDi0u)

= Tn+(it(0)2u*uiDin) = 1(V). (6.2)

6.2. In the commutativeRiemanniancase,usingthe Dirac K-cycle, let w bea
one-formin S’(M), andchoosea E Q’A with ltD(a) = w; then a

2(it(dcv)) =

i dw. Foranytwo sucha, thecorrespondingoperatorsit (dcv) differ by anelement
ofit(dJ0’) = c(kera2).

We thusget P(it(da + a
2)) = idw in N

2. Fromthe nearest-pointproperty
of orthogonalprojectors,we thushave

2 —n/2

inf{I(V) : itD(a) = w} = (dwldw)2 = (n/2)! fildwiidx. (6.3)

Let us call the right handside of this equationYM(V). Sincethe curvatureof
the classicalconnectiondeterminedby w on the trivial line bundleoverM is
just dw, we seethatYM (V) is, in thisinstance,justthe usualYang—Mills action
of classicalgaugetheory.Thetrace theoremcan now beregardedas sayingthat
the Dixmier traceis the “dequantizer”for theK-cycles built over the settingof
classicalgaugetheories.Notice that for n = 4, the constantin YM (V) is just
l/8it

2.

6.3. Thepreviousdiscussiontells usthatthecorrectdefinitionof theYang—Mills
actionin noncommutativegeometryis given by (dw + w2 dw + w2), where
w is a one-formandthe derivationandinnerproductaretakenin the senseof
QDA. To determineit for an arbitrary hermitian vectorbundleS = pAm, we
introduceconnectionswhosevaluesareD-forms. Sucha connectionis a linear
mapV: £ —~ S®AQAA satisfyingtheanalogueof (4.34)with thederivationtaken
in QDA. Fromthe universalpropertyof Q’ A, thereis a universalconnectionV
suchthat (id ®JtD) (Vs) = iVs for s E S.

The curvatureof ~‘ is
0V : ~‘2 E EndA(S,S ®4 Q~A). We have O~=

—(idoitD)(0), where0 is the curvatureof V, andwe define

YM(V) := (Ov I Ov), (6.4)

wherethis innerproduct incorporatesthe one inducedon EndAS by the her-
mitian structureon 5. To makethisprecise,we remarkthat the tensorproduct
S ®A N canbemadea Hilbert spacewith innerproduct

(si P~1I ~2 0 ~~2):= (~iI (s1 I s2)i~2), s1,s2ES; ~ 1,~72EN. (6.5)

Here (‘ii I ~2) denotesthe innerproductin N andthe actionof A on N is un-
derstood.Henceforthwe will write simply it (ratherthanid ox) for the homo-
morphismfrom S ®A QA to £(S®A N) extending(5.6).Now (5.16),with D
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replacedby lo D, definesan innerproducton it (5 ®A QkA). As before,onehas
an orthogonalprojectorP whoserangemaybe identified with the completion
of S ®A Q~A;adaptingpreviousarguments,we arrive at

YM(V) = inf{I(V) : itD(V) = iV} = (Pit(O) IPit(0)). (6.6)

Forthe DiracK-cycleon M, thisiscomputedby (5.19),wherenow‘i = i (doi +
wAw) is the matrix-valuedtwo-formsuchthatPit(0) = Pit(da + a2) = c(~)
whenV = pd + a andit (a) = w. We therebyrecoverthe standardYang—Mills
functionalon generalvectorbundles:

(2 \—n/2
— kit) 2YM(V) = lIdw+wAwII dx. (6.7)

(n/2)!
M

6.4. In manycasesthereisacurvature-independentlowerboundfor 1(V) which
arisesfrom aHochschildcocycle corresponding,in the commutativeRieman-
nian case,to the fundamentalhomologyclassof the underlyingmanifold. To
glimpsethis truth, weintroducethe following Hochschildcochain:

:= Tr~(Iao[D,a
1]... [D,a0]D”), (6.8)

where(7-1, D) is atameK-cycle overA andI is thegradingoperatoronN. This
ç is in fact a Hochschildcocycle:here (4.27) telescopesto

bço(ao,.. .,a,,~)={Tr+(Iao [D,a1] ... [D,a0] an+i D”)

—Tr~(Ia0~1ao[D,a1]... [D,a0]D”)} = 0, (6.9)

since Tr+ is a trace,andthe tamenessallows a,,~1to slip pastD
0 underthe

Dixmier trace.Onecancheckthat,I~i~ ~‘ in general,so ~‘ neednot be a cyclic
cocycle.However,it turnsout thatç~is cyclic in manycases.

Forexample,in the caseofthe Dirac K-cycle, we get from the tracetheorem:

= n(
2it)nftr~0)a0~1da0)D)

(2it)”
12

= (n/2)! faodaiA...Adao~ (6.10)

wherey is the chirality section(A.l3) of the Clifford bundle,sinceI = c(y),
andsincetr(c(y)c(aoda

1 . . . da0)) timesthe volumeform on M equalsa0da1A
A da,,, by (A.l 5).Note thatfor this example,ç~is indeedacyclic cocycle.

This suggeststhat the cohomologyclass [vi] E H
0(A,A’) is the right gen-

eralizationof the notion of “fundamentalclass”of a Riemannianmanifold in
noncommutativegeometry.As it happens,this is not the whole story,sincea
furthersubtletyis involved:onemayin manycasesdeformç~to acohomologous
Hochschildcocycler, givenby z(a

0,. . ., a0):= Tr(FF [F, ao]... [F, a0]) with
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F = DIDI’; now t is alwaysa cyclic cocycle,andit is the class [t] E HC0(A)
which providesthe right generalization[10].

To see that ~ providesa lower boundfor 1(V), we considerfirst the case
£ = A,andtaken= 4. In this case,using (4.28),1(V) = ,~,(O2), where

W(ao,...,a
4) ~(aoda, . . .da~):= Tr~(a0[D,a1] ... [D,a~]D~), (6.11)

so that cii is alsoa Hochschildcocycle, as is seenby droppingI from (6.9).

Now, thesumanddifferencecii ±ç~arepositivecocycles,i.e.,
±~)(aoda~ da2(aodaida2)*) = (~2±çi)(aoda1da2da~da,~a~)

=Tr+(ao[D,ai][D,a2]D_
2(l±I)D2(ao[D,a,][D,a

2])*)�0,(6.12)

since~(1±1)arepositiveoperators(in fact, orthogonalprojectors)commuting
withD

2 andwithit(Q2A). Theinequalityshowsthat(wlii)±:=

is apositiveinnerproducton Q2A.In particular,sinceO~= 0, we arriveatthe
following inequality:

1(V) = y~(O2)� I~(02)I= lTr~(Iit(0)2D4)I. (6.13)

Note that the sameargumentworks whenevern is divisible by 4 (since we
requirethatD”/2 be an evenoperator).

To extend (6.13) to the generalcasewhereS = pAm,we assumethat ~ is a
cyclic cocycle,sothat ç isatraceon Q2A on accountof (4.33);weknowthat~ is
alsoatracetheresince(7-1, D) is tame.Bytensoningthesewith thematrixtraceon
EndA(pAtm), weprolongthemto traceson EndA(E®AQ2A),whichwecontinue
to denoteby ~ and y”. Onechecksthat the inequality1(V) = ,,/~(02)> 1c(02)I
remainsvalid in the generalcase.

Finally, we showthat the right handside Ic~(O2)Iis independentof the uni-
versalconnectionV, on accountof the cyclicity of ~. Indeed,if V = pd + a,
write V~: = pd + ta for 0 < t < 1. Then

(d/dt)~~
0c~(0~)= (d/dt)~10r~((pdpdp+ tpdap + t

2a2)2)

= 2ç~(pdpdpdap)= 2~(dpdppda)

= 2çI(dpdpda)—2ç,~((dp)3a)

= 2ç~’od(pdpda)—2ç~(p(dp)3pcx)= 0, (6.14)

usingthe traciality of ~, the propertyc~a d = 0 of the definition (6.8), the
identity a = pap, andp(dp)3p = 0 from (4.17). In consequence,we have
çi(02) = ç~((pdpdp)2)= ~(p,p,p,p,p).

We havefinallythedesiredlowerboundYM(V) > l~’(p,p,p,p,p)Ifor n = 4.
The fine theoryof cyclic cohomologyallows one to saymuch moreaboutthe
right handside.It turnsout [7] that it dependsonly on the stableisomorphism
class [p] E K

0 (A) of the vector bundleS and on the cyclic cohomologyclass
[q’] E HC

4(A); for the Dirac case,with S = 1(E), it is relatedvia the index
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theoremto the Chernclassesof the ordinaryvectorbundleE. Wheneverone
canshowthisterm to bepositive,onehasameasureof the “nonflatness”of the
underlyinggaugetheory.

6.5. To theYang—Millsactionwenowwantto adda“fermionicpiece”.Suppose
we havea tameK-cycle (7-1, D) on A anda vectorbundleS over A; let V be a
compatibleconnectionwith valuesin S ®A Q)~A.On the HubertspaceS ®A N

with innerproduct (6.5), wewant to define a self-adjointoperatorD—~by the
minimal couplingrecipe:

D~(s®?1):= s®D~+ (Vs)~. (6.15)

At first glance this is not well defined, sinceVs is not, strictly speaking,an
operatoron £ ®A N on accountof the quotientinvolved in the definition (5.7)
of QJ~A.Thus we take a universalconnectionV for which itD (V) = iV, and
defineD~as

D—~(s®t7):=s®D~l—iit(Vs)1l. (6.16)

IfS = pAtm andV = pd + a,thenwe haveD~= pD—iit(a), whereweregard
D asactingcomponentwiseon A”’ ®AN. This is clearlya symmetricoperatoron
S ®A 7-1, sinceit (a) is skew-adjoint;so it is a self-adjointoperatorwith domain
S ®A Dom (D). Moreover,two universalconnectionswith imageiV differ by
a

1 — a2 E kenit, so the right handsideof (6.16) dependsonly on V.
The fenmionicactionis now givenby

IF(Y’) := (wlD~w) (6.17)

for “wavefunctions” i,1i E S ®A N.

Lemma 6.1. This action is gaugeinvariant, i.e., (uy.i I D~,~1u~)= IF(W) for

u EU(S).

Proof It sufficesto showthatuD~u*= D(~)on £ ®A N. If x E u DomD~,
wehave

uD_vu*x = u(pD_iit(a))u*x

= puD(u*x) — iuit(a)u*x

= pDx + u(Du*)x — iit(uau*)x

= pDx — iit(udu* + Uau*)x

= (pD—iit(y0(a)))x, (6.18)

using (4.41). LI

With this, we are nearingthe constructionof a dictionary spelling out the
translationbetweennoncommutativegeometryandparticlephysics.TheHilbert
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spaceN andthe DinacoperatorD havethe morestraightforwardtranslation;the
first is the Hilbert spaceof fenmions.They aredefinednow in acompact“Eu-
clidean”space,ratherthanin Minkowskianspacetime,but nevermind. ThenD
is plainly the Dirac operatorfamiliar from quantumelectrodynamics.Thealge-
braA andthebundleS arerelatedto gaugetransformations,andtheYang—Mills
actioncorrespondsto the puregaugebosonpart of the actionin particlethe-
ory. Theobtainedactionmustbe“Wick-notated” to Minkowski space.After that
processleadingto a Poincané(andgauge)invariant action,we will imposethe
chinalityconditionon ourfenmions.Thus,the conceptof K-cycle is an embod-
iment of the “neutrino paradigm” thatpervadesmodernparticlephysics [33].

6.6. Other ingredients,like the Higgs fields that result from “spontaneoussym-
metrybreaking” in the standardapproach,giving rise to massfor somegauge
bosons,the Yukawacouplingsgiving massto fenmions...arealreadypresentin
schematicform in the exampleof the two-point space.

Example.We comebackto gaugetheoryon the finite space{q,, q2}, but in a
slightly lesstrivial context:we considerthe simplestnontrivialbundleof rank
two oven q1 andrankoneoven q2.

First webriefly reexaminethe trivial rank-onebundleS = A, with the tame
K-cycle (C”’’ + CN,D) given by (5.20), and the connectionV = d + a with
~
Sincen = 0 andTn+ = Tr for this finite dimensionalexample,we have

YM(V) = Tr(it(0)
2) = 2(1 — I~I2)2tr((m~m)2). (6.19)

Recallthat the gaugegroup U(1) x U(l) acts by ~ ~ ~ so that (6.19) is

manifestlygaugeinvariant.Now

D~= D—iit(a) = (~~*~t) (6.20)

thefenmionicactionbeing(yi Dvci’) = 2 Re(~yi~m~
1)for cii E N. Asindicated

above,wehavealreadyreproducedherethe situationof symmetrybreaking(the
ground stateof the Yang—Mills action, given hereby I I = 1, is nonunique
andactedupon nontnivially by the gaugegroup) andthe situationof “Yukawa
coupling” betweenthe “fields” ~ and i’.

Now we considerthe vectorbundleS = f A
2, wheref := (,~~ A con-

nectionis of the form Vs = f ds + aswith a = faf = _cv*. If we write
a = ap dp — a* (1 — p) dp with a E C2>’2, the condition cx = faf amountsto
a

21 = a22 = 0. Let uswrite a1, =: 1 — ~, a12 =: —~, so that

~ ~~pdp~ (621)
— ~2(1p)dp 0 }•
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Thenthe curvature0 is f df df + f da f + a2, that is,

0= ((1—Ic~il2)dPdp—Ic~
2I

2PdPdP —q~,çb~(l—p)dpdp ~, (6.22)
—~~2(l—p)dpdp (1 —k~2I)(l —p)dpdpj

so the diagonalentriesof 02 are (1 — l’~iI2— Iq~2l2)2p(dp)4+ ((1 — i~iI2)2+

l,1.,1~,2l2)(1 —p)(dp)4and ((1 — l~2I2)2 + I~1~2I2)(1 —p)(dp)4.Now, bear-
ing in mind (5.23),we computeTn (it (0)2). SinceTn it (p (dp ) 4) = Tn it (1 —

p)(dp)4) = tr((m~m)2),weget

YM(V) = Tn(it(02)) = (1 + 2(1 — l~iI2— I’~2I2)2)tr((mtm)2). (6.23)

This is by constructioninvariant underthe gaugegroup U(2) x U(1), which
spells sometrouble,as we shallneedSU(2) x U (1) gaugeinvariance;but let
us not anticipateevents.The spaceof sectionsrealizing the minimum of the
Yang—Mills action is a three-sphere;note that this minimum is now positive,
so thebundleis not flat. Oneeasilychecksthatfor this example~(f (df )4) =

—tn((m~m)2),so the minimumof (6.23) is givenby the generalestimateob-
tainedin (6.13).

6. 7. It is afeatureof the formulationof theStandardModel in noncommutative
geometrythat theK-cycle oneneedsis notjust amoduleovenonealgebra,but a
bimoduleover two. Very roughly speaking(wewill laterbemoreprecise),one
algebra incorporatesthe electroweakgaugegroup and the colour symmetries
belongto the other. To see that it is perfectly natural,within the mathematical
frameworkof noncommutativegeometry,to considertwo commutingalgebras
actingon the sameHilbert space,we pauseto examinehowaversionof Poincaré
duality maybe formulatedin the noncommutativecase.

By Poincaréduality (oven an ordinary compactn-dimensionalRiemannian
manifold M) we understandthe isomorphismof de Rham differential forms
w ‘—~ *w : S”(M) £nk(M) determinedby fMr~A *w = fM(~I w)dvol,
wherethe pairing of k-forms (~j1w) is given by the metric on M. Fora fixed ,~,
thecontinuouslinearform *w ‘—p fM(tl 1w) dvol therebydeterminesadeRham
currentC~,which in turn determinesa uniqueHochschildcohomologyclassin
H”~’(A,A’); hereA = COG(M). Recallingthat the algebraof D-formsfor the
Dirac K-cycle is just the de Rhamalgebra,we therebyget a canonicalmap:

Qj~(A)—~ H””(A,A’). (6.24)

The point at issue is that the samealgebraappearson both sides of (6.24)
only if A is commutative.In generalthe right handside mustbe replacedby
Ha” (13, 13’), whereB is a newalgebra.Belowwe will give somesufficientcon-
ditionsfor asuitablechoiceof 13. On a deepenlevel, the right “Poincanédual
algebra”maybe soughtsystematicallyusingtheKK-theoryof Kasparov:thisis
discussedin ref. [13].
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6.8. Let usrecall that if A, 13 aretwo algebras,arepresentationp of the tensor
productA o 13 on a Hilbert spaceN is given wheneverthereare commuting
representationsPi ofA andP2 ofB on N; onehasp(a 0 b) = Pi (a)p2 (b).

Connes[13] hasidentifiedthe conditionsofthe following definition asbeing
the main ingredientsof Poincaréduality in noncommutativegeometry.

Definition. LetA, 13 betwoalgebras.We shallsaythatagradedK-cycle (N,D, F)
oventheir tensorproductis a matchingK-cyclefor A o 13 providedthat:

(a) (N,D) is n+~summablefor someintegern, andis tame;
(b) for anya E A, bE B, we have [D,a],b] = 0;
(c) the Hochschildcocycle ço for this K-cycle satisfiesq(l, c1,. .. , c0) = 0,

i.e.,

Tn~(1[D,c1]... [D,c0]~D~
0) = 0, for c

1,...,c~E A®13. (6.25)

Since [D,a],b] + [a,[D,b]] = [D,[a,b]] = 0,weseethatcondition(b)
is equivalentto [D,b],a] = 0 for alla E A, bE 13.

Considerthe Dirac K-cycle (L
2(S),D) overA = COG(M). We canregard

N = L2 (S) asa representationspacefor the algebraA®A (with bothcopiesof
A actingby multiplicationoperators),andso (N,D) is alsoa K-cycle over the
algebraA®A.ThisK-cyclesatisfies(a) by lemma5.7; (b) is justthe observation
thatc(da) commuteswith b on the spaceof spinors;and(c) follows from (6.10)
andStokes’theorem.

Theduality mapis now givenby the following result.

Theorem6.2. Suppose(N,D, 1) is a matching K-cycle over the algebra A ® 13.

Thenfor eacha E Qk(A) there is a Hochschild cocycle c,, E Z”(13,13’) given
by.

c~(b
0,.. ., b0~):= (_)0k Tn~(Iit(a) b0[D, b1]... [D, bfl1’]IDI~).

(6.26)
Moreover, c,, depends only on itD(a), so itD(a) t—~ [c,,] is a well-definedlinear
mapfrom Q~Ato H~”(13,B’).

Proof To showthatc,, is acocycle,wecomputebc0(b0,.. ., b01’~1). As in (6.9),
this expressiontelescopesto

Tn~(Fabo[D,bi]...[D,b01’]b01’+iIDI”)

—Tr~(1ab0j,~1bo[D,bi].’’ [D,b01’]IDI
0) = 0, (6.27)

usingtamenessandcondition (b) to interchangeb
0k+1 successivelywith IDH”,

I, andit(a).
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Ifa’ = >Ja~da~...da/(E jk_l, then

cd0’(bo,...,bfl_k)

= Tn~(Fboit(da’)[D,b1]... [D,b0_1’]lDl
0)

= ~ (F[D,boafl [D,a~] ... [D,afl [D,b,] . .. [D,b
0_1’]IDI

0)

—Tn~(1[D,bo]it(a’) [D,b,] .~ [D,bfl..
1’]lDl

0), (6.28)

andthe right handside vanishes,using it (a’) = 0 and (6.25). Thus c,,, = 0
wheneveritD(a) = 0; so c,,, dependsonly on itD(a) and givesa well-defined
mapfrom Qj~(A) to zn—k (8,13’). Passingto the quotient,weobtainthe afore-
mentionedmapfrom Q,~Ato H”” (8,5’). LI

Remark.The story canbe takenfurther. If da = 0 in Q~+ ‘A, one canshow
that c,,, is a cyclic cocycle. A finer analysisthen producesa linear map from
the cohomologyof the differential algebra(Q~A,d) to a quotientof the cyclic
cohomologyofthe algebra13. Thesealgebraicdevelopmentsareoutlinedin ref.
[13]. The upshotis thatPoincanéduality canbe given a fully cohomological
formulationin noncommutativegeometry.

6.9. A necessarylast stepbeforeturning to the StandardModel is a briefdis-
cussionof productspaces.Let (N,, D

1), (N2,D2) be K-cycles on the respective
algebrasA,,A2, andlet .T denotethe gradingoperatoron N1. Theirproduct is
the K-cycle (N, ®N2,D) for the algebraA, 0A2,whereD := D1 0 1 + F, ®D2.
Thetrick of thisdefinitionisthatD

2 = D?0 1 + 1 0D~,showingthattheorders
of summabilityaddup.

Thereisacanonicalbimodulehomomorphismfrom thespaceof formsQ (A,0
A

2) to QA,OQA2.GivenhermitianvectonbundlesS,,S2associatedrespectively
to A,, A2, thereis a hermitianvectorbundleSi ®S2 associatedto A1 o A2.

7. The Glashow—Weinberg—Salammodel from noncommutativegeometry

7.1. We now have all the ingredientsnecessaryto reconstructthe Standard
Model. The contentionis that a pure gaugefield with a fermionic current is
ableto give usall the intricacies ofthestandardmodelLagrangian, if we suit-
ablymodify thespacetimecontinuum.We nextspell out in detailhowthe GWS
Lagrangianis recovered,in aEuclideanspacetimeframeworkwith anoncom-
mutativegeometry.In thissectionandthe next, wemainly follow Connesand
Lott [11,12], incorporatingthe simplificationsdueto the itD homomorphism
broughtin by Connesin ref. [13], describedin section5.

The generalstrategywill be to think of the algebraA togetherwith avector
bundle S as specifying the gauge group, and the actionof A on the Hilbert
spaceas specifyingthe fermionic representationof the gaugegroup. Thus, as
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S C0 0 COG (M), roughly speaking,andN L2 (5) o C’~,thetotal spaceof
fermionsisS ®A N C0 0 L2 (5) ® C”G. We havedenotedby NG the numberof
leptonicgenerations.In otherwords,we obtainNG fermionsin the fundamental
representationof the vectorbundle.

To obtain the GWS model, we take the structuregroup U(I) >< U (2) for
the time being. We take the product, in noncommutativegeometry,of the K-
cyclescorrespondingto thefour-dimensionalspaceexampleandthe two-point
example,so the spacetimeis formedby two copiesof a compactspin’~manifold;
we takeaC-bundleon one leafanda C2-bundleon the other.

Recall that the two gradedK-cycles we havebeenconsideringso fan are the
Dinac K-cycle (L2(S), ~, y~)overthe algebraC’°(M) andthe K-cycle (CNG ®

CNG, D~,a
3) oven thealgebraC + C. Hereweabbreviate~ : = y’

2 8,, as usual,and

(0 m’\ (I 0\
Dm: ~ o)’ a

3:= ~o i)~ (7.1)
We assumeherethat m is a positive-definitematrix, indeed a real positive
one,sincewe will interpretit as a massmatrix (the reality condition is not a
restriction,as we may assumeit to be diagonalized).For the productK-cycle
overA = COG(M) + COG (M), the operatorcan be written as

/ ~®I y5om\
D:=~1®(I+1)+y5®D~= ( j. (7.2)

\y5®m çe®i /

This productK-cycle is 4+..summableandtame.
As the vectorbundle,we takethe productof the trivial bundleCOG (M) and

the bundlef((C
2)2), with f := (~~ Thus S = f((COG(M) 0 C2)2)

C~°(M)0 C3. Notethat S = A + (1 —p)A.The total fermionspaceS ®A N is
thenL2 (S) 0 C3 ® CA>G; an elementof it canbe written in the suggestiveform

w:= ( eL ), (7.3)
VL I

wherethe entrieslive in L2 (5) ® CNG; we shallwrite operatorson this spaceas
3 x 3 matricesof operatorsoven L2 (5) 0 CNG. (Thepresenceof the projectorf
maybe accountedfor if onethinksof theseas 4 x 4 matricesof operatorswith
zerothird row andcolumn,which we will suppress.)

7.2. A universalconnectionV is givenby Vs = f ds + as, with cv E A2>’2 ®A

Q,A. Herea is a 2 x 2 matrix of one-forms,satisfyingfaf = cv anda* = —a.

To describea more explicitly, we considerthe structureof Q A. Let a =

(a
1,a2) E A,with eacha1 E COG(M). An elementb E Q‘A c A® A is givenby

aquadrupleoffunctionsb = (b,,,b,2,b2,,b22)with eachb1 E COG (MxM); the
functionsb,,, b22 vanishon the diagonal,but b,2 andb2, neednot. An element
c E Q

2A c A o A o A can be written as a family of functionsc = { ~ E
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COG (Mx Mx M) : i, j, k = 1,2 }, subjectto somerelations.Thealgebraicrules
for manipulatingsuchexpressionscanbedeterminedby combiningtherulesfor
the commutativeandtwo-pointexamples.Onegets:

(ab),1(x,y) :=a,(x)b,~(x,y),

(ba),~(x,y) :=b,3(x,y)a1(y),

(ac)jjk(x,y,z) :=a1(x)c,11’(x,y,z),

(ca)jjk(x,y,z):=cjj~(x,y,z)ak(z),

(bb’),~k(x,y,z) :=b,1(x,y)b11’(y,z),

(da),~(x,y):=aj(y) —at(x),

(db),11’(x,y,z) :=b3~(y,z)—b,1’(x,z) + b,~(x,y).

(b
t),

3(x,y) :=

(~*)jj~(~,y,z) :=c~~~(z,y,x). (7.4)

Writing elementsb E Q’ A in matrix form, wecanexpressthe condition a =

faf as
b1,,, b,,,2 0 b2,,2
b,,2, b,,22 0 b222

a= 0 0 0 0 (7.5)
b3,2, b3,22 0 b4,22

whereeach2 x 2 block br lies in Q’A. The skew-adjointnessof a is now:

b,~,~(x,y)= b,~,(y,x), b,1(x,y) = b3,3,(y,x), b~,1(x,y)= b4,~,(y,x).
(7.6)

We will alsowrite elementsof A as a = ~r(fT,f~

T) with ft.,fir E C°°(M),

to minimize the clutter of indices.If b = (f,f’)d(g, g’) is onesummandof a
typical elementof Q’ A, we haveit (b) E £(N) given by

it(b) — .(f 0~ ( ~®1 y5®m’\ (g 0‘~0 f’) ~y
5om ~®i)’~o g’

— ~(~(f1g)®1 —y5fAgom~ (77)
— ~y5f’Ag®m c(f’dg’)®I)’

whereAg := g — g’ E C°°(M).Taking finite sumsof suchoperators,we get
the reductionrules:

Iic(lim b~1(x,y)~ol if j = I,
it(b),~ = ç \y—’x x—y 1 (7.8)

(iy5btj(x,x)®m if i~ j.

Ifwe rewrite (7.5) as a = >r~ (a finite sum),where&(x,y) equals
( f,r(x)(~(y) — gç(x)) fr(x)(g~(y)- gç(x)) f~(x)(g~’(y) — g~(x)) \

f,”(x)(gf(y) — g~
T(x))f,”(x)(gç’(y) — g~’(x))f~’(x)(g~’(y)— g~”(x)) , (7.9)

\f~r(x)(gr(y) — g~r(x))f;r(x)(g~r(y) — g~r(x)) f,~r(x)(g,~r(y) — gir(x)) J
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we thenget for it(a) E £(5 ®A N):

/ c(A)®I y5(q~—l)®m y5~®m ‘\

it(a) = ~i y~(q~,—l)®m c(A’)®I _c(W*)®I ~, (7.10)

\. ~5c~®m c(W)®I c(Z)®1 /

wherewehaveintroduced

A := >f1rdg~ A’ := ~f,’
Tdg~, Z := >f,,irdg~r

W:= >f
3’

Tdgç = _(~f~rdg~r)*,

-1 := >f,~rJgf =

(7.11)

HereA, A’ andz areskew-adjointone-formson M, W is a complexone-form,
andwe havetwo scalanfields ~,, ~2; we aim to showthat theseform a Higgs
doublet.

7.3. We nowcomputethe Yang—Mills action functionalof subsection6.3. We
mustfirst determineit(da). From (7.7) weget for the top left blockof it(da):

(c(df,’)®I ~y
5Af1’®m~ (c(dgç)®I —y5Jgç®m

— r ~y5Af,’®m c(dfi~r)0I J ~y5Agçom c(dg~)®I_c(df1r)c(dgç)ol y5c(Af,’dg~’+Af,’~Agf®m
2 —df,’Agç)®m

= ~ y
5c(df,”Agç _c(df,~r)c(dg~~)®1. (7.12)

—Af1
Tdgç)®m +Af,’Agf®m2

Onecansimplify:

~ df,”~Ag~— Af,Tdgç

= >d(f
1~rAgf) ~f1/r~g~r_f,r~gf

=dq~,+A’—A. (7.13)

Similarly
>Af,Tdg~~_df,rAgç= dq~+ A—A’,

= 2—~,—qY,~.
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Moreover,
>c(df1T)c(dgç) = c(dA + ci’i),

>c(df,”~)c(dg~”)= c(dA’ + W2),

for somescalarfields Wi, W2. When one computesthe Yang—Mills functional
YM(V) using (6.6),the projectorP suppressesthe scalartermsWi 0 I, sowe
canas well assumethat each y,, = 0. Thus the top left blockof it (dcx) is:

(—c(dA)®I+ (2—~i—,~)®m
2 y

5c(dçb~+ A—A’)®m

~ y~c(dçb,+ A’ —A)®m —c(dA’)®I + (
2—q~i—q~)®m2

(7.14)
For the third columnof it (da), we get similarly:

( y
5c(Af~dg~—df2

TAg~)®m

~ I —c(dfç)c(dg~T)®I+Af~’Ag~om2
\_c(df

41T)c(dg~)ol + Af~,’~Ag~® m
2

( y
5c(d~+W~)®m\

= I c(dW*)®I_~®m
2 J , (7.15)

—c(dz)®I I
afterusing(7.11)andsuppressingtermsofthe form ci’ ol. For thebottomnow,
we checkthat

>df~’TAg~—Af~’dg~= d~5
2+ W,

~c(df3”~)c(dgç) = c(dW+ W3),

and>,Af~Ag~= ~ (Notethatsumssuchas ~ f~Aga’, whichdo not appear
on the right in (7.11), necessarilyvanishon accountof a = faf.) Putting
everythingtogether,we arriveatthe following expressionfor it (dcx):

f—c(dA) 0 0 \
0 —c(dA’) c(dW~)) ol

\.. 0 —c(dW) —c(dz)J
0 0 \

+ ( 0
2—~,—q~—~ ®m2 (7.16)

\ 0 ~2 0)
/ 0 y

5c(dq~+ A—A’) y5c(dcb~+ W*)\
+ I y5c(dq~i+A’—A) 0 0 I®m.

‘\ y5c(dcb2+W) 0 0 I

The curvature0 hasimage

it(0) = it(fdfdf) + it(fdcxf) + it(a)
2 =: R + S, (7.17)
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where,aftersubtractingthe termSkilled by theprojectorP—eachmatrixentry
S,~is of the form ci’tj ® I for someVhf E COG(M)—theself-adjoint operatorR
hascomponents

R,,=—c(dA)®I+(l—IcbiI2—Ic~
2I

2)®m~,

R
2i=iy5c(~,(A_A~)+~2W*_dq~i)om,

R22 = —c(dA’ — W* A W) ol + (1— kIiI
2) 0 m3,

R
31 = iy5c(çb2(A—Z)—q~,W—dcb2)®m,

R32=—c(dW+WAA’+ZAW)®1—cb,cb~om~,

R33 = —c(dZ—WAW
t)®I+ (l—I~2I2)®m3. (7.18)

Note thatthe subtractionof Swill kill matrix multiplesof the identity: wehave
written

:= m2 — N~’tn(m2), (7.19)

to denote the orthogonalprojection of m—in the Hilbert—Schmidt spaceof
matrices—onthe orthogonalcomplementof the multiples of the identity (see
the discussionat the endof thissubsection).

TheYang—Mills functionalcanthereforebeexpressedas asumofthreeterms:

YM(V) = ‘2 + 11 + 10, (7.20)

where‘k is oftheform fM II~~II2by (5.19),with ~ E Sk(M). Omittingthecom-
mon multiplicative constant1 /8it2 (which amountsto normalizingthe Yang—
Mills functional),we find explicitly:

‘2 NGJ (IIdAII2 + IldA’ — W~ A WII2

+ IIdZ — WA W*1I2 + 2IIdW + WA A’ + z A WII2),

I, =2tr(m2)f(lld~, + (A’ — A)~, — W*~
2Il

2

+ Ildq~
2+ Wq~,+ (Z —A)~2Il

2),

jo = tn( (m~±)2)f1 + 2(1 - I~~I2— I~2I2)2. (7.21)

It is clearthat ‘2 is the puregaugepart of the Lagnangian;indeed,if we intro-
ducethe covariantderivative

D._+A _W* 722
.—~ W d+Z ‘ (.
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we have‘2 = NG fM £2, with

A’ W* 2£2 = IIdAII2 + ~D(~z ~ (7.23)It is alsocleannow that the pain of scalarfields 1 = (~), arisingfrom the
cross-termsbetweenthe two leavesof our spacetime,is to be interpretedas a
doubletofHiggs bosons.Indeed,I~may be rewritten as

I, = 2tn(m2)fII(D_A)~II2, (7.24)

representingthe kineticterm for the Higgs fields; andJo is thenthe Higgs self-
interactionterm. Notice that its form is almost identicalto the action (6.23)
for the two-pointexample;that exampleshouldthus be thoughtof as a “pure
Higgs” construction,which therebyfinds its naturalhomein noncommutative
geometry.

NoticealsothattheHiggsself-interactionterm1o isproportionalto tn ( (m~)2),

wherem~is traceless,on accountof the projectioninvolvedin computingthe
Yang—Mills functional (6.6). This reflects the differencebetweenit(Q2) and
Q~,mathematicallyspeaking,andhasalso a transparentphysical interpreta-
tion: whereasin the usualversionof theGlashow—Weinberg—Salammodelthe
existenceof the Higgs potentialhasnothing to do with the numberof genera-
tions, here,if all the electron-likefermionsin the variousgenerationshadthe
samemass,in particular, if therewereonly onegeneration,we wouldnot havea
Higgspotential.

7.4. Thus far, wehaveobtainedessentiallythe bosonpartof the GWS model.
Themainpoint of noncommutativegeometryhasbeenmadeandrewritingthat
part in Minkowskian form is trivial. For a more precise identification of the
variousterms,werefer to the treatmentof the full StandardModel in the next
section.

Thecomputationof thefenmionicactionismoreofanafterthoughtin noncom-
mutativegeometry.We first “Wick-rotate” IF(V’) = (ci’ I D~,ii)— i(çv I it(a)W)
andthen impose (y

5 0 a3) ci’ = ci’. The first of thesetermsgives the integral
oven M of

i(ëR~eR+ eL~eL+ VL~1/L)— (eLmeR+ ëRmeL). (7.25)

Employing (7.10), the secondtermis the integralof

i(ëi~4eg.+ ëL14’eI. + /~~ei~_ëIJ,%7*vL+ i~vj~)

— l)meR—ëR(J/~— l)meL—~j.~2meR—ëR~mvL,(7.26)

wherewe havewritten ~ = yEA,, insteadof c(A). Adding theseexpressions
together,we get

IF(y’) = J, + J0, (7.27)
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with

j, =if~e~~+ ~)eR + eL(~+

+ VL(~+ ~J)vj. + vJj/”eL —

Jo = —f(eL~ImeR+ eR~meL+ vL~2meR+ eR~mvL). (7.28)

The full actionfunctionalYM(V) + IF(W) = ‘2 + I~+ J~+ J, + Jo thus
containsfive termscorrespondingto thoseof the GWS model. The integrand
of J1 is simply the fermionkinetic term of the Lagnangianwith a minimal cou-
pling to the gaugefield; recallthatA, A’, zareskew-adjointfields. The J0 term
givesthe Yukawacouplingof the fenmionsof left andright chirality; recallthat
m is a positivematrix, whoseeigenvaluesarethe variousleptonmasses.

7.5. The local gaugegroupfor thismodel is U(1) x U(2), ratherthanU(1) x
SU (2). We identify the latter groupwith the subgroup

G:= {(v,u) E U(l) x U(2) : v = detu}, (7.29)

via theisomorphism(v, u) ‘—~ (v, v’u). At the Lie algebralevel, the condition
v = detu gives:

A=A’+Z. (7.30)

Thesomewhatad-hocreplacementA’ ~ A—~ givesaquickrecipewhichreduces
the actioncomputedhereto theexpectedform of the GWSmodel. In the next
sectionwe will reexaminethe matter,to obtaina moremeaningfulprocedure
for the reductionof thegaugegroupwhen a quarksectoris present.

8. The full StandardModel

8.1. To reflect on the constructionof the StandardModel in noncommutative
geometry,webeginwith thegaugegroup. An isodoubletof quarks,suchas (~),
comesin threecolors

(dL dj~ d~
Y b\L L L

which is actedon by therepresentation203of SU (2) x SU(3). So far wehave
workedunderthe assumptionthat the full gaugegroupcould berepresentedas
UA = { u E A: u*u = uu* = 1 } for someinvolutive algebraA (perhapswith
an addedunimodulanitycondition), andthat the representationof the gauge
group on the Hilbert spaceof fermions could be obtainedby restriction from
thatof A. This is certainlytruefor a U(N) model (on an SU (N) model),but
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the representation2 ® 3 cannotbe so obtained,because*-algebnarepresenta-
tions cannotin generalbe tensored.We thereforeneedtwo separatealgebras
A and8, incorporatingelectroweakandcolor gaugesymmetries,respectively,
with commutingactionsontheunderlyingHilbert space;thegaugegroupis then
aunimodularsubgroupof UA x U8. This doublealgebraactionis suggestedin
noncommutativegeometryby the Poincarédualitymapping.

8.2. We will keepto theschemeof usingan algebraof type C°°(M) OAF where
AF is a finite-dimensionalalgebra.We examinethe finite partfirst. In the GWS
model,we let AF be the algebraC ~ C actingon a vectorbundleoven the two-
point space{q,, q2} with fibers Eq, = C, Eq> = C

2. Alternatively, we could
replaceAF by C~ C2>’2 actingon E = C ±C2 in the obviousway; nothingis lost
by dropping the commutativity (which is the wholepoint of noncommutative
geometry);andtheformulaefor connectionsandcurvaturessimplify, sinceone
mayreplacepd + a by d + a.

However, the presenceof the conjugateHiggs field 1’ = ~ )~ =: J~I~
in the Yukawa term,which is necessaryto give massto both quarks (whereas
in the leptonicsectorthe neutrinoremainsmassless),suggeststhat the SU(2)
gaugegroupbeintroduceddirectlyby restrictingtheC2>’2 summandof A by the
conditionJxJ’ = x~. For { u E U(2) : JuJ’ = u” } = SU(2) this realizes
the unitaryequivalencebetweenthe fundamentalrepresentationof SU (2) and
its contragredientrepresentation.Of course,{x E C2>’2 : JxJ’ = x~} gives
preciselythe quaternionalgebraH, so the bestchoiceof AF is the real algebra
C ~ H ratherthanC±C2>’2.

Ifq E H, wecanwrite q = a + Jif = a + J/3* with a,fi E C; thecorresponding
elementof2 is (~. ,f. ). Letus recallthatquaternionmultiplicationis given
by(a+/?j)(a+rj)=(aa_/Jr*)+(ar+fla*)j.

Thecolor symmetryhasgaugegroupSU (3), acting trivially on leptonsand
by its fundamental representation 3 on quarks; so the corresponding algebra is
naturally C ~ C3X3.

8.3. The finite-spacepart of the proposedmodel is thereforeagradedA0 8
module (bF, DF, YF) with A = C~ H, 8 = C ~ C3>’3. We maydecomposebF as
follows:

(8.1)
with 13 actingby scalarson lx,, I),, eachof whichcarriesa *-nepresentationof A.

A finite-dimensional*-nepresentationof therealinvolutivealgebraA is ofthe
generalform

it(2,q) = ~‘n+ ±~In-~(~*~)®‘m.

Sincethereare no right-handedneutrinos,the lepton sectori)~hasdimension
3NG, andthe quark sectorbi hasdimension4NG, whereNG is the numberof
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generations.For a typical vector,weusethe suggestivenotation:

/ ,, dR
~‘ eR \

:= I eL , Wi := R , (8.2)
i / dL\ V~/

UL

whereeach eR, dR, etc. denotesan NG-tuple with one representativein each
generation.Accordingly, we choosethe representationsit

0, it1 of A on 1)0, 1),
respectivelyas

/2 0 0\
it0~.,q):= ( 0 a fi ) ®INçp

\0 —/3~ a*J

20 0 0

0 2 0 0 ®IN (8.3)
00 a fi
0 0 _fl* a*

In summary,1)F = [C~H~ (CE~C~l-O)®C
3J®l~”°.Notethat it := it

0+(it,®13)
is faithful. Thegradingoperatoris givenby YF = it (1,—1); since(1, —1) lies in
the centreof A, bothA andB actby evenoperatorson bE.

We choosethe self-adjointodd operatorDE : = D0 ±D, 0 13 as

0 0 m~ 0/0 me 0’\ d0 0 0 m~D0 := I me 0 0 I , D, := . (8.4)
0 oJ md 0 0 0

0 m~ 0 0

Here me, m~are real positive-definiteNG x NG matrices.Also ‘~dis positive-

definite, but we cannotassumethat it is diagonalizedsimultaneouslywith m~.
Thematrix thatwill interchangetheorthonormalbasisgiven by themasseigen-
statesof the u-quarksandthe d-quarksis essentiallythe Kobayashi—Maskawa
matrix. NotethatDE commuteswith B, sothatthecondition [Ds-, it (a) ], b] =

0 is satisfied,andit commutesalsowith the diagonalsubalgebra{ it ~2,2) : 2 E

C} ofit(A).
Notice alsothat if onesuppressesthesecondnowandcolumn of it1 (2, q) and

of D,, thesereduceto copiesof it0 (2, q) andD0, soweneedonly computewith it1

whenexploringfurther.

8.4. We mustidentify the A-bimodulesQ~(A)andQ~(A).Now the it-homo-
morphismis determinedby the actionof A by it1 on the K-cycle (1),, D1). It is
straightforward to check that

-iit,(~ra~da~)= ~it,(2~,q~) [D,,it,(2~,qf)] = (~~), (8.5)
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with
0” 7a

12 $12

= (‘~mu) ~ a~2) = mtq,2,

y(a21 1
321\/md 0

— ~—fl~1 a~,) ~ ~ mu) = q
21m, (8.6)

wherewe haveabbreviated

(8.7)m~ (md 0\~ mu)’

and

a12 = ~2~(a’j —2’j), $12 =

r

a2~= ~a~(2’j —a’~) + p~çj3ç* $21 = ~/3,(27_a1j*) —a~/3ç;
r r

thus

q,2 :=a12 + $121 =

r

q2, :=a2, + 132,1 = ~q~(2~ — qç), (8.8)
r

andsowe have
/ 0 mtq,2’\ (8.9)

iti(~ra~da~) ‘(,~q21m 0 )‘

analogouslyto (5.24).ThusQb(A) = H ~ H.

Beforeplunginginto the determinationof Q~(A),noticethatmq = qm iff
q is complex.Indeed,if q = a + flj with a, /3 complex,then

/0 /3\
[m,q] =(md—mu)®~ o)

/0 /3\
[mmt,q] =(mdm~j—m~)®(,~ o,i~

From (8.9),
/Z 0\

it1(q,2,q21)it1(q~2,q~1)= — 0 W)’ (8.10)

where
Z = mtqi2q~1m, W = q21mm~q~2. (8.11)

Onthe otherhand,wehave

(q,2+q21)m 0it,(~rda~dac)= (mt 0 mmtq,2+q21mmf+X)’ (8.12)
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where
X =>Jq0r [mm~,qç]

~ ~)/~). (8.13)

NotethatXis not aquaternionicblockmatrix, but isratherofthe form (mdm~—
m~)® (,~. ‘~)with 2,u complexnumbers.If V denotesthe vector spaceof
suchelements,thenby examiningit1 (da) when it1 (a) = Owe concludeatonce
V = ir,(dJ,3

1).NowitiscleanthatQ~(A)= HE~l-flandthatd:Q~(A)--#Q~(A)
is givenby d(q

12,q21)= (q12 + q21,q,2 + q21).
Let a E Q/~(A)beskew-adjoint.Since (q,2,q2, )* = (—q,,—q~2),thismeans

that a = (q,q*)~The vectorbundleis A itself~then the curvatureof thecon-
nectionitD(d + a) is

0 =itD(da + a
2) = (q* + q + qq*q + q* + q*q)

= (Ii + qI2 — 1,11 + q~2— 1). (8.14)

Thus

Tr(02) = [~(trm~)2 + ~(trImdI2)2 + tnm~ImdI2] (Il + qI2 — 1).

The minimal connectionsform a three-sphere:1 + q E SU(2), just as for the
finite-spacepartof the GWSmodel.

8.5. With the necessarybookkeepingfor thefinite part nowcompleted,weturn
to the full model. We take a compactfour-dimensionalspin” manifold, with
K-cycle (I2(S),~,y

5), of the Dirac type andconstructthe following K-cycle
(N, D,1) as a moduleoverthe algebraA ® 5, wherenow

A:= COG(M)®(C±H), 8:= C°°(M)®(C±C
3>’3). (8.15)

We haveN = 12(5) 0 (1)~~ (1), 0 C3)) =: N
0 ±(N, ® C

3), whereF2(S)
is the Hilbert spaceof squane-integrablesectionsof the spinorbundleover M,
bo = C3NG and1), = C4NG as before;13 acts on N in the obviousmannerandA
acts on N

0 andon N, by representationsit0, it1 extendingthoseof (8.3). The
gradingoperatonisl= ?5®YF, andD = ~®1+y5®DF, i.e.,D = D0+ (D,®13),
wherenow

/ ~®I y5®me 0 \

Do=(y5®me i~1®I 0 ),
\, 0 0 ~®IJ

0 y5®m~, 0
O ~®I 0 y5®mu

= y5®md o o (8.16)
0 y5®mu 0
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ThebimoduleQ)~(A) isreadilyidentified.Givena~= (f~,q~),aç = (f1
T,q~),

wheref( eC°°(M, C) andq~E C°°(M,H) arecomplex-andquaternion-valued
functions,respectively,on M, let

a := ~a~da~ E Q’A. (8.17)

We now find that

it~(a) = i~iti(for,q~) [D,it,(firqc)] = i (~~), (8.18)

withX = y
5mtq,2,Y = y5q21m,and

~ (c(A)®1 0 — ( c(W,)®I c(W2)®I\
— ~ 0 c(A*)®I)~ ~ ~-c(W~)®I c(W~*)®I)~

(8.19)
with

= ~f~~(q,T_f,r), q2, = ~q~(f1r_qç),

A>fo?~df,T, W=Wi+W2j=>q,dqç. (8.20)

We seethat q12 andq21 lie in COG (M, I-I), andthat A andW areordinaryone-
forms on M, C-valuedandH-valued,respectively.Therefore

Q)~(A)=S’(M,C)~C”~(M,H)~C°°(M,H)~S’(M,H); (8.21)

atypicalelementmaybedenoted(A,q12,q21, W).Thealgebraicrulesfor Q)~(A)
are

(f,q) (A,q12,q21,W) = (fA,fq,2,qq21,qW),

(A,q12,q21, W) (f, q) = (Af,q,2q,q21f,Wq),

(A,q,2,q21,W)* = (A*,_q,,_qj~2,W*),

d(f,q) = (df,q—f,f—q,dq). (8.22)

If a E Q’A is a skew-adjointone-form,thenwe haveA* = —A, W* =

andq~2= q21.

8.6. We rewrite (8.18) in block matrix form as

.(c(A)®I y5mtq,2
it1(a) =11 . (8.23)

\, y5q21m c(W)®I

Fromthiswe find

2 /c(A
2) 01 + mtqi

2q2im y5mtc(q,2W — Aq,2) \
—it,(a ) = I. (8.24)

\. y5c(q21A — Wq21)m c(W
2)ol + q

2immtq,2J
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Moreover,sinceda = >~,.d(f~, q~)d(f1
T,qf) E Q2A,wehave

—it (da) — ~ ( c(df,~,”)ol y
5mt(q~— f0r)L...lt\y5(f0r_q0r)m c(dq~’)®I

>< ( c(df,r)®I y5mt(q~—f,~)’\~ (825)~5(f,rqç)m c(dqç)oI [

The entriesof the productblock matrix maybe simplified as follows, usingthe
techniquedevelopedin section7:

—it,(da),, = ~

= c(dA + ci’) ol + mt(q,2+ q21)m,

—it, (dcv)12 = y5mtc (~r — df0
1’(qç — f,r) + (q~— f~,’)dqç)

= —y
5m~c(dq,2+ A — W),

—it,(da)21 = y5c(~~(f0r_q,~)df1r) —dq~(f(_qç))m

= —y5c(dq2,—A + W)m,
—it,(da)22 = >~c(dq~dqç)ol + (f~’— q~)mmt(qç~f,r)

= c(dW + x) ® I + mmtq,2+ q21mm~+ X, (8.26)

whereci’~x arecomplex-andquaternionic-valuedfunctions,respectively.,Let V
denotenowthevectorspacewith elementsof the form (mdm~j— m~)® (,~. J~.
with 2,u E COG(M,C). By examining it,(da) when iti(a) = 0 (i.e., when
A = 0, W = 0, q,2 = q2, = 0), it yields

SE iti(dJ0’) ~ s = (Vh ~‘ ~®2+ ~ (8.27)

whereWE COG(M,C),X E COG(M,H),andXE V.
The imageof the curvature0 = da + a

2 maynow beobtained.Let uswrite
~12 := q,

2 + 1, ~‘21 := q2, + 1. Adding (8.24)and (8.25), we get anexpression
for it1 (0):

= c(dA + W’)®I + (kh21
2 l)mtm,

—it, (0)12 = _y
5mtc(dc~,2+ A~,2—~,2W),

—it, (0)21 = —y5c(dc~21— l~2,A + Wq~21)m, (8.28)
—it,(0)22 = c(dW+ WA W +x’)®I + q~2immfq~i2_mmt+ X.

If~,2= a12 + $~i~~21 = a2, + $21j, then

~2immt~~12mm t
— ( (a21a,2 — 1 )mdm~— fl21/3~2m~ a2,fl12mdm~ +

— ~ —/3~la12mdm~— a~,$~2m~ $~l$h2mdm~+ (a~,a~2— 1 )m~
= ~(mdm~+ m~)(~2,~12- 1) + ~ (mdm~— m~)(~~,,) (8.29)
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with 2 = a~
1a1~+ /321$~2—1, ~ = a2,fll2—$2,a~2.Thesecondtermon theright

handsidelies in V, andhencein it1 (dJ,~).Finally, we get it,(0) = R, + 5,,
whereS1 is the componentin it1 (dJ,’), and

(R,),, = —c(dA)ol + (1— I~~,2I
2)(mtm)±,

(R, ),2 = y
5mtc(d~,2+ A~,2—

(R, )2, = Y5 c(d~21— ~21A+ W~2,)m, (8.30)

= —c(dW+ WAW) 01 + ~(l — l~12l
2)(mdm~,+ m~)±.

Here

(mtm)±= mtm— ~Nd’tr(mdm~ +

(mdm~+ m~)j= mdm~
1+ m~- Nd’ tr(mdm~+ ma).

We remarkthatatthispointwehavedeterminedthe structureofthebimodule
Q,~A.Indeed,if we expressR, symbolicallyas

(dA,dW+ WA W;d~,2+ Aq~,2— q5,2W,dq~2, — ~21A + Wq~21

~12~21,i~211~12), (8.31)

thenQ,~Amay be identified with the vectorspacegeneratedby suchquantities,
i.e.,

Q~A 5
2(M,C)~S2(M,I1-l) ~ (S’(M,H))2 ~ (C°°(M,H))2, (8.32)

wherea typical elementmaybedenotedby (F, G; w
12,w21r121, r212). The alge-

braicrules for Q~Aarethen

(f, q) (F, G; w12,w21r121, r212) = (fF, qG;fw,2,qw21fr,21, qr212),

(F, G; w~2,w21r121, r212) (f, q) = (Ff, Gq;w,2q,w21f;r,21f,r212q),

(F,G;w,2,w21r,21,r212)*= (F*,G*;w~,,w~2r~21,r~,2).(8.33)

The differentiald: Q)~A—* Q~Ais given, in view of (8.26) and (8.27),by

d(A,q,2,q21,W) =(dA,dW;dq,2+ A — W,dq2,—A + W;

q,2 + q21,q2, + q,2), (8.34)

andthe productQAA x QbA—~Q~Aby
I A T17\ I .0 F rx’I

~,ii ,q,2,q21,
= (A A A’, WA W’;Aq~2— q12W’, Wq~,— q21A’;q,2q~,,q21q~2).(8.35)

Similarly, ito(0) = R0 +
5o~where5 e it

0(dJJ) and,on makingthe replace-
mentm~ (me~ 0), we obtain:

/ —c(dA) I + ~ c(B12) me y~c(C,2) me

R0 = ( y5c(Br2)0 me c(D,) ® I + ~® mL c(D2) ®

‘~ yic(C~)®me c(D3)~I c(D4)®I-i- ~®m~
(8.36)
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wherel—Içb,2I
2 = 2,dcb,

2+Acb,2—çb,2W= B,2+C,2j,m~= m~—Nd’tr(m~),
and

(~‘ ~)= (8.37)

( dW,_W2AW2* dW2+W1AW2+W2AW,*
dW,*_W2*AW2

Actually, wehavecomputedR1 in moregeneralitythannecessary,as wehaveto
takeinto accountthe relationsA* = —A, W* = —W (i.e., W hasno realpart),
~‘12 = ~,, as indicatedafter (8.22).Note that ~21 =: ~P,~ CI~~jis identified as
the Higgs doublet~ = (~).

If R: = ~ (R~0 13), the flavoundynamicspartof theactionfor this model
would be givenby YM (V) = YM (V ) ,,~,+ YM (V),, where

YM(V)o = II(Ro)t1II
2 = ±f(L

2o + £,~+ £00)dx,

where£20,£,o,£oodenotethepartoftheLagrangiandensitycomingfrom (ordi-
nary) two-forms,one-formsandzero-forms,respectively;similarly forYM (V),.
However,herewe mustpausefor a momentto weigh in otherconsiderations.
First we wish to considerthe color algebra.

8. 7. As the actionof 8 commuteswith the off-diagonal terms of the opera-
tor (8.16), we haveQ1~T3 S’(M,C) +S’(M,C

3>’3) andsimilarly for Q~A.
Thus the chromodynamicspart YM(V)~of the Yang—Mills action is “purely
commutative”;we canwrite in an abbreviatedway, for the correspondingcur-
vatureR~:

R~= (R~o,R~,)= (dA’,dK + KAK), (8.38)

whereA’ is aU(1) gaugefield andK is a U(3) gaugefield.

8.8. It istimethatweturnto thematterofthe “correct”gaugegroup.Theunitary
groupU(A ® 8) of the algebraA0 13 would obviouslybe too large. However,
the Hilbert spaceN is not regardedas an A ® 5-module,but ratheras an A—B-
bimodule;this insightcomesfrom the generalschemeof matchingthe algebras
with thePoincarédualitymapping.(Toget a bimodule,8 mustacton N on the
right, ratherthanon the left; this is easilyachievedby replacingthe original B
by 13OPP,i.e., reversingthe orderofproductsin B, which amountsto representing
C ~ C3x ~on N by night matrix multiplication.)

Therelevantsymmetriesnow form the productunitary groupU(A) x U(8),
whichis still too large.Indeed,the gaugegroupthatwe seekis Map(M, U(1) x
SU(2) x SU(3)); some sort of unimodulanitycondition mustbe imposedin
order to extractthis as a subgroupof U (A) x U (13).
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We beginby consideringthe finite-spaceexampleagain, i.e., (bE,DE) as an
AE—BF-bimodule,with AF = C ~ H, BE = C ~ C3>’3. Nowif

u = (2,q;,ir’,v) EU(AE)xU(8E) = U(1)xSU(2)xU(l)xU(3), (8.39)

andif ~(1 — YE) =: e = (0, 1), ~(1 + YE) = 1 — e = (1,0) arecomplementary
projectorsin AF, we imposethe following algebraicchirality condition:

uESU(el)E) xSU((1 —e)bE). (8.40)

Sincee lies in the centreof AF, sucha u is a direct sumof blocks: u = eue~
(1 — e) u (1 — e). To showthat this effectsthe necessaryreductionof the gauge
group,we simply computethe determinantsof bothblocksof u:

det(eue)= det(q®1N
0®(/.r’+v)) = (,t1’detv)”0,

~

= (2
1(detv)2)N0. (8.41)

Thus (8.40) holdsif andonly if

= = (detv), (8.42)

in which caseu ~ (~,q,tr~’I3v)givesan isomorphism:

(U(AE) xU(BE)) fl (SU(e1)E)x SU((l — e)bE)) U(1) x SU(2) x SU(3).
(8.43)

It is cleanthat this mechanismcannotbe incorporatedinto the GWS model
of section 7, since the relations (8.42) require the presenceof the bimodule
structureprovidedby the secondalgebraB. Notice alsothat condition (8.40)
imposesno restrictionon the numberof generationsNG.

Therestrictionof therepresentationit to this subgroupgives linear relations
betweengeneratorsof theLie algebra,whosecoefficientsmaybe identified with
the hypencharges.In fact, onemayregard it as the parameterfor the symmetry
groupU(l)y. Writing v = it’/3v0, wherev

0 E SU(3) andit
113 is a cuberoot

of it~we get

/2 O\ —, /2e2* O\ ~

it(u)=~
0 q)it ®~ o q)®itiVO

it
2 o ~ it4’3 0

= ( ~ qit’) ~ ( q~v~)® v
0, (8.44)

which is interpretedas assigninghyperchargesof —l to eL and,n.,, —2 to eR, —~

to dR, ~ to uR, and ~ to dL and uL. We see that theseare indeedthe correct

hyperchargesfor the componentfenmionsof the StandardModel [23]. The
total hyperchargewill be zero,as is neededfor full anomalycancellationin the
quantizedtheory [18].

To completeourtask,wefurtherdigressin ordertojustify (8.40) in thegeneral
case.We remark thateand (1 — e) form a basisfor the centreof the algebra
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AF, so that (8.40) saysthat u is unimodularwith respectto the determinant
functionassociatedto any of thefollowing traces:

t~(X):_ Tr(cx), fOrXEAF®13F, (8.45)

where c runs oven self-adjoint elementsof the centre of AF. The associated

determinant function is given by

det~(expx):= exp(r~(x)). (8.46)

The phaseof this determinantfunctioncanbe computedby

Phase~(u) := ~ f r~(u’(t)u(t)’) dt, (8.47)
2iti

0

where t ~.—÷ u(t) is a smoothpathfrom 1 to u in U(AF) x U(13F). Thus (8.40)

is equivalentto the following condition:

Phase~”~(u) = 0 for all seif-adjoint c E Z (AF). (8.48)

We can now formulatethe sought-afterunimodulanitycondition in general.
If (N,D) is a d~-summableK-cycle oven A oB, which is an A—13-bimodule,

then (8.48) makes perfect sense provided (a) u lies in the identity component
ofU(A) x U(B); and(b) the traceson the right of (8.47) areobtainedfrom the
Dixmien traceon £‘ + (N) by

Tr~(it(cx)IDI”), (8.49)

where c runsover self-adjoint elements of the centre of A. Let SU(A, 13) denote

the subgroupof U(A) x U(!3) whose elements satisfy (8.48). Weadopt this as
ourdefinition of the gaugegroup (of thesecond kind) for our model. Using the
tracetheoremoncemore,it canthenbe seenthatSU(A,13) = Map(M, U( 1) x
SU(2) x SU(3)). At the infinitesimal level, the unimodularitycondition (8.42)
gives the following reduction of the gauge fields:

A = A’ = —(K,, + K
22 + K33). (8.50)

8.9. As persuasivelyargued by Connes and Lott [12], to compute YM(V ) o +
YM(V), + YM(V)~would be surely irrelevant, as the Hilbert spaceof the
fermions is not irreducibleunder the actionof the gaugegroup; in effect, we
would be artificially imposing relations between the coupling constants. A more

generalgaugeinvariantbosonicactioncanbe obtainedby multiplying R0,R,,
R~o,R~,by (arbitrary)positiveoperatorsz0,z,, zoo,z~1,commutingwith theac-
tionsof AandB, beforetakingtheDixmientrace.Ontheotherhand,Kastler[29]
will only admit z0 = = cv11 and z1 = ~ = a,~Iwith a~+ cvq = 1. We
leaveit to thereaderto sortout thedifferentpossibilities,accordingto hisjudge-
mentandtaste;for the “maximalist” view on the relationsamongthe constants
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appearingin theLagrangian,whereupononeobtainsall parametersof the Stan-
dardModel from the fermionmassesandasingleuniversalcouplingconstant,
we referto ref. [30]. At anyrate,if we follow ConnesandLott, it is clearthat
we havereproducedthe terms in the bosonicpart of the standardmodel La-
grangian,with arbitraryconstants—ifwewereallowedto rescaletheHiggs field
adlibitum. Moreprecisely,weget:

1. The termscorrespondingto the gaugefields: IIdAII2, IIdW + W A WI~2,
IIdK + K A K112 (the electroweakandthe gluon part,respectively).

2. Thekinetic term for the Higgs field. For laterusewe give a “precise”coef-
ficient here.We had

Tr~(R~®I
3)= 3Tr~(R~)= ~f~21 +~,, +~o,dx, (8.51)

andfrom (8.30)we compute

= 6tn(mdm~+ m~)IId~i2+ Aq.,2 — q.i,2W~~

2 =: CqIId~
12+ Aq~,2— ~,2WII

2
(8.52)

andtherefore
= 2tr(m~)IId4i,

2+ Aq,2 — &2WI1

2

CiIId~,
2+ A~12— ~i2WII

2. (8.53)
3. The Higgs self-interactionterm.Proceedingas above,weget

= Dq(l — I~I2)2~ (8.54)

where

Dq = ~tn(mdm~)2 + ~tr(m~) + 3tr(mdm~m~)— 3(tn(mdm~+ m~))2/Ncj.
(8.55)

Also
£oo = D

1(l — V~~I
2)2, (8.56)

where
= ~(tn(m~) — (tnm~)2)/NG. (8.57)

Onemustnowmakethe Wick rotationandcan write, for instance,

A = i(g,/2)B~dx”, W = —ig
2W,~(ra/2)dx~,

wherethe Ta arethe Paulimatrices...,to translateinto the physicist’slanguage.
We close this subsectionby mentioningthat Chamseddineet a!. [6] have

recentlydevelopeda formalismapparentlyakin to noncommutativegeometry
andusedit to obtainLagrangiansfor grandunificationmodels.

8.10. The fermionic action is (y., I Dvw), where

DvD—iit(V) ((~+~)®I y5mt~,2 ~ (8.58)
\. y5~2,m (~+lf’)®Ij
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Clearly, as in section7, the Yukawapart is the contributionof the off-diagonal
termsin Dv and (again imposingchirality after the Wick rotation) we obtain
an expressionaltogetheranalogousto the fermionicpart of the Lagrangianof
the StandardModel.We shallnot botherto write it exceptfor pointingout that
the termswith massesmd correspondto thoseof the GWS Lagrangian,while
the new termswith massesm~like ñL~m~uR,uR&mUuL, etc. are of the same
form but with the Higgs doublet ~2I = 1~replacedby ~.

Now, however,a new considerationentersthe picture. If Yukawatermsof
the abovetypeareto represent(in the brokensymmetryphase)the massterms
of fenmionsin the StandardModel, thenwe arenot allowedto scalethe Higgs
field arbitrarily. The netresult is a relationshipbetweenthe two parametersof
the Higgsfield, leadingimmediatelyto the formula:

mH=2~/~1~~ (8.59)

for themassof theHiggsparticle.We recallthatthevaluesofD1, Dq, C1, Cq given
in formulae(8.52) to (8.57) areonly indicative,as the Yang—Mills functional
could have beenchosensomewhatdifferently. As they stand,however,they
illustratethe conclusionthat the relationshipimplies that the Higgsmass is of

the sameorderof magnitudeas the top quark mass.
In fine, all the propertiesof the standardmodelLagrangianmaybe obtained

from a singleK-cycle in the framework of Connes’noncommutativegeometry;
moreover,it is “predicted”that theHiggsmasswill fall well within the perturba-
tive regime.The particularrelationfor the Higgs mass,however,as everyother
relationpurportedto follow from noncommutativegeometry,is washedout by
the standardnenormalizationprocess[1].

Appendix A. Clifford algebras,spinor bundles, Dirac operators and all that

A.]. In this appendixwe collect the facts aboutClifford algebrasand spinons
thatweneed.Generalreferencesarethefundamentalpaper [2], the books [3,
5,31] andthe usefulsurveys[15, 20].

The Clifford algebra Cl (E) = Cl (E,q) determinedby a real vectorspace
E equippedwith aquadraticform q is an associativealgebrageneratedby the
elementsof E subjectto the relationx x = —q(x,x). It may be definedas
Cl(E,q) := T(E)/I(q), whereY(E) is the tensoralgebraoverE and1(q) is
the ideal generated by { x ox + q (x, x) : x E E }. Also denote by q the bilinear
formq(x,y) := ~(q(x +y,x +y)—q(x,x)—q(y,y)).Thecanonicalmapping
of E into Cl(E) is injective, so E mayberegardedas asubspaceof Cl(E); we
thenhavethe relation

xy+yx=—2q(x,y) fonx,yEE. (A.1)
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It is clearthatCl(E) satisfiesa universalproperty:

Proposition A.!. If B is a real algebra with identity andf: E —* B is a linear
mappingsuch that f(x)2 = q(x,x), then it factors uniquelythrough Cl(E).’
f = fIE~wheref: Cl(E) —~ B is an algebra homomorphism.

Fromthis oneseesthat the orthogonalgroupof q consistsof automorphisms
of the Clifford algebra:0(E, q) c Aut (Cl (E)). In particular,the orthogonal
transformationx ~-÷ —x yields aninvolutiveautomorphismof Cl(E), which we
denoteby a; explicitly, a(xi . . ~ = (_)kx, ‘~xj,.Its ±1eigenspacesgive a
Z

2-gnadingCl°(E)~ Cl’ (E) of Cl(E).
Taking nowfor B the oppositealgebraof Cl (E) (thesamevectorspacewith

the productreversed),wealsofind an involutive anti-automorphismcalled /3,
i.e., /3(x, . . . xk) = Xk’ . x1. Note that a and/3 commute.We define another
anti-automorphismx ‘—~ ~, calledconjugation,by .~: = /3 (a (x)).

Giventwo 7L2-gradedalgebrasA, B, let A ~ B denotetheir 7L2-gradedtensor
product:

(A ~ B)°:=(A°®B°)~ (A
1 oB’),

(A~B)’ :=(A’®B°)~(A°®B’), (A.2)
with multiplication

(x®y)~(z®w) = ~ (A.3)

Many propertiesof the Clifford algebracomefrom the following simplepropo-
sition.

Proposition A.2 (Chevalley). Letq,, q
2 bequadraticformson real vectorspaces

E,,E2, respectively;definef: E, ~ —* Cl (E,,q,) ~ Cl (E2,q2) by (x,y)
x ® 1 + 1 ® y. Thenf extendsuniquelyto a7L2-gradedisomorphismofCl(E, ~
E2,q,~q2) ontoCl(E1,q1)~Cl(E2,q2).

Proof Check that f(x,y)
2 = —(q, ~ q

2)(x ~y,x+y)l ® 1, using (A.3).
It follows that thereis an algebrahomomorphismf: Cl(E, ~ E2, q, e q2) —~

Cl(E,,q1) ~ C1(E2,q2).Sincethex®l+ l®ygenenateCl(E,,q,)~ Cl(E2,q2)
as an algebra,f is onto;andoneeasilyseesthat it is injectiveby examiningits
effect on a basisfor Cl(E, ~ E2,q, ~ q2) generatedby basesforE, andE2. E

Corollary A.3. If e1,e2,.. .,e0 is a basis ofE, then 1 and{e,~e,2. . .e,,,~: 1 ~
k < n, 1 ~ i, < < tk < n}form a basisofCl(E). ThusdimCl°(E)=

dimCl’(E) = 2~’.

Proof If dimE = 1, we have T (E) ~ [X], a polynomial algebra.Then
Cl(E) ~[X]/(X

2 + q(X,X)), withbasis{l, X}. Sincethereis aq-orthogonal
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decompositionE = ~L, E into one-dimensional subspaces, the result follows
by induction on n.

The natural filtration of the tensoralgebra inducesa filtration on the un-
derlying vectorspaceof Cl(E); in the sameway one gets the usual filtration
of the exterioralgebraA’ (E). There is a canonicalvector spaceisomorphism
SA’(E) —* Cl(E), compatiblewith the filtrations, given by

~k(X, A~ AXk) := ~ sign(T)x~(,)‘~ ‘X
1~. (A.4)

tESk

Let C°c C’ c ,,. c C
0 = Cl(E) be the first filtration. We can define an

associatedgradedalgebra G by G : = ~k C”/C~1. Composing2k with the
canonicalprojectionCk —* C”/C”’, we obtain a gradedalgebraisomorphism
betweenA’ (E) and G.

A.2. Themultiplicative groupof unitsCl(E)” is an opensubsetof Cl(E), since
x is a unit iff y ~ xy is a nonsingularlinear transformation;henceit is a
Lie group.The twistedadjoint representationof Cl (E ) U on Cl (E) is definedby
y ~—* ço(x)y := a(x)yx’. Let F be the subgroup{x E Cl(E)U : ço(x)y E

E for ally E E }; F is invariantundera and /3. ThemapN: Cl(E) —* Cl(E)
x ~ x~is called the spinorial normof x; for x E E,we haveN(x) = q(x,x).

Henceforth,weconcentrateon the caseE = ~ q
0(x,x) := (x’)

2 + ... +

(~~)2.Write Cl
0 for Cl(!~

0,q
0).It is cleanthat Cl, C, Cl2 0-I (the quater-

nions).We write F~for the subgroupF in thiscase.

Proposition A.4.
(a) Thekernelofço: F~—~GL(n,l~)is W, the nonzeromultiplesof].
(b) TherestrictionofN to F~isagrouphomomorphisminto 0~andNoa = N.
(c) i’~(F~)C 0(n), theorthogonalgroup of~

0.
(d)For x E 0~\ {O}, x E In andçD(x) is the reflectionacrossthe hyperplane

orthogonalto x.
(e)LetPin(n) denotethe kernel of N : F,~ —+ ~ The restriction of ço to

Pin (ii) isa surjectiononto0(n) withkernel{ 1, —1 }. In otherwords,thefollowing
sequenceis exact.’

O—~Z
2—*Pin(n)—--~0(n)—--~O. (A.5)

Proof If u E kenç~,let u = u0 + u1 with u, e Cl~(i = 0, 1); thenu,x =

(—)
1xu, for x E 0~. If {e,,...,e

0} is an orthogonalbasisfor ER
0 we canwrite

u
0 = z0 + e1z1 with z, E Cl~,.Now e,z0— z1 = e,u0 = u0e, = e1z0+ z1,

so z1 = 0. By permutingthebasisof ER
0, weseethat u

0 doesnot involve any e1,
andso is a scalar.A similarargumentshowsthat u1 vanishes,so u E ER*.
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Now supposex E F~then N(x) E F~too. For y E ER0, one hasço(~e)y=
fl(ço(~)y) = /3(a(x)y(~)’) = a(x)’yx. From this,y = a(N(x))yx
N(x)’, which implies N(x) E ER*. Moreover, for x,y E F~onehasN(xy) =

xy~5c = N(x)N(y). That N o a = N is obvious. For the orthogonality, it is
enoughto notethatN(ço(x)y) = N(a(x))N(y)N(x’) = N(y).

If x,y E ER0, x ~ 0, from (A.l) we get

—, q(x,y)
ço(x)y=—xyx _Y2q(XX)X•

Since the reflectionsgeneratethe wholegroup0(n), ço: Pin(n) —~ 0(n) is sur-
jective. Also, kenç~fl kerN = {l, —1}.

NotethatPin(n) is a closedsubgroupof thegroupof unitsin Cl
0, thuscarries

anaturalLie group structure.This makes~~Ipjfl(fl)a Lie grouphomomorphism.
The group Spin(n) is by definition the pre-imageof SO(n) under ~. We have
the exactsequence:

O—#Z2-—÷Spin(n)--LSO(n)——*0. (A.6)

If x E Pin(n), then ç~(x) can be written as acomposition of reflections
am. Pick elementsx1 E ER

0 n Pin(n) such that ~(x
1) = a1 for each j.

By propositionA.4(e), x = ±x1 xm. ThusPin(n) is the disjoint union of
Pin(n) n Cl~= Spin(n) andPin(n) fl Cl~.For example,Cl, = C, Cl? = ER

andCl~= iER. Here a is complex conjugationand 13 is the identity; N is the
squareof the usualnorm on C, F, = {z E C* : ~iz

1 c iER} = ERUiR\{O} and
Pin(l) = {l,i,—l,—i}, Spin(l) = {l,—l}.

PropositionA.5. Forn > 2, g~:Spin(n) —~S0(n) is a connectedtwofoldcovering.
For n > 3, this is the universal covering group of S0(n).

Proof SinceS0(n) is connected,the connectednessof Spin(n) follows from
finding a pathin Spin(n) joining the two elements{±1} of kenç~.Sucha path
is givenby

tf-4 cositt + sinitte
1e2= (cos~itte, + sin~itte2)(—cos~itte1 + sin ~itte2),

where{e,,e2} arethefirst two elementsofanorthogonalbasisofER
0. This twofold

covering is the universalcoveringsincethe fundamentalgroupof S0(n) is Z
2

forn>3.

A.3. Write Cl’ (n) : = Cl (ER
0, — q

0). Note that Cl’2 ER
2>’2. There are isomon-

phismsof real algebrasCl
0 0Cl’2 Cl~~2and Cl’0 ® Cl2 Cl0~2.Indeed,if
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e,,.. . ,e0 form the canonicalbasisof ER
0, denoteby e~,. . . , e~their imagesin/ . n+2 /

Cl
0. We candefinea linear mappingyi: ER —~Cl~0 Cl2 by

~(e,):=l®e~, W(e2):=l0e~,

ci’(ei) := e~..2® e~e~for 3< i ~ n + 2. (A.7)

OnechecksthatW(ei)ciJ(ei)+ W(ei)y(ej) = 2ô11(1®1) inallcases. Bytheuni-
versa!property, ci’ extends to a homomorphism of Cl~~2into Cl0 0 Cl~,which
is clearly onto andmust be injectiveby dimensioncount.The argumentestab-
lishing Cl’0 o Cl2 Cl0~2is similar.

The complexification Cl (E,q) : = Cl (E, q) ®~C canbe regardedas the Clif-
ford algebraover C of the complexifiedvector spaceEc : = E ®~C with the
complexified quadraticform qc. On C

0 all nondegenenatebilinear forms are
equivalent; in particular Cl(E,q

0) Cl’(E,q0) =: Cl0. Thus we obtain the
following classificationof complexClifford algebras.

Theorem A.6. The complexalgebrasCl0 are isomorphic to C2”>’2’~for n = 2k
andto C2k>’2k + C~k>’~kfor n = 2k + 1.

We seethat Cl2k is simpleand its unique simplemodule hasdimension2k,
whereas Cl2k +1 hastwo simple modules, each of dimension 2k, Note that there
is an isomorphismof algebras:H o~C C

2>’2.
For theclassificationofreal Clifford algebras,which is moreinvolved, seeref.

[31, §1.4].
We will alsofind usefulthe groupSpin” (n), definedas (Spin(n) x U(1))/~2’

wherewequotientby therelation(h,z) ‘-.~ (— h, — z). We haveahomomorphism

ço”:Spin”(n) —* S0(n) x U(l) given by ço”(x,2) := (~(x),22),so that the
following sequenceis exact:

0~Z
2~Spin”(n)~SO(n)xU(l)~0. (A.8)

Note that ço” is a representationof Spin” (n) on C
0 = ER0 ®~C.

A.4. LetE be a real vector space of even dimension n = 2k. A (complex) spinor
spaceassociatedto (E, q) is simply a Cl (E, q )-module.Thereis no canonically
definedspinonspace;onecangive an explicit representation by choosingacom-
plex structureJon E (i.e., J is an isometrysuchthat J2 = —id). On (E,J),
viewedas acomplexspaceby the usualrecipe (a + i/J)x : = ax + /3Jx,we can
definethe nondegenenatehermitianform

(u Iv) := q(u,v) + iq(Ju,v), (A.9)

naturallyextendedto the spinonFock spaceF(E,J) := ~ A~(E,J). Then
thereis an isomorphismof algebrasc:Cl(E,q) —* EndcF(E,J), definedas
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follows. If x E E, definee(x): s ~ x A s, andlet i (x) be contractionwith the
bra vector(xl, givenby

i(x)(x,A...Axk):=~(—)’(xIxf)x,A.’AxJA...Axk. (A.lO)

Oneeasilychecksthe anticommutatons{e(x),e(y)} = {i(x), i(y)} = 0 and
{e(x),i(y)} = (y~x),sothat

{e(x) — i(x),e(y) — i(y)} = —(y Ix) — (xl y) = —2q(x,y). (A.l 1)

Wewnitec(x) := e(x)—i(x),andrecovenc(x)c(y)+c(y)c(x)= —2q(x,y).
Thusthe linear mapc:E —* EndcF(E,J) extendsto an injectivealgebraho-
momorphismfrom Cl(E, q) to End~F(E,J), which is sunjectiveby dimension
count.We maythereforeidentify Cl (E, q) with its imageunderc. This is just
the theory of the canonicalanticommutationrelations,wheree(x), i(x) are
regardedas creationandannihilationoperators,respectively.

Remark.An analogousconstructionworks for real Clifford algebras[20, 31];
oneneedonly replace(x I x~)by q(x,x1) in (A. 10). Subjectto thisunderstand-
ing, wecanalsorepresenttheClifford productby x E Cl0 as e(x) — i (x) acting
on A’ER

0.

TheFock spaceis 1
2-gnadedby parityof the orderof exteriorproducts.Now

for eachx E F, c(x) is an odd endomorphism,i.e., it exchangesF~(E, J) and
F_ (E, J), and so c is a gradedisomorphismfrom Cl(E, q) to End~F (E, J).

If x E E ands,s’~E F(E,J), onehas (s I e(x)s’) = (i(x)s Is’~), from which
we concludethat everyc(x) is skew-adjointon F (E, J). Hencewe have

(c(x)slc(x)s’) = N(x)(sls’). (A.12)

Onehasthe inclusionsSpin(n) c Pin( n) c Cl0 c Cl0, with Spin(n) c Cl~.
The (complex) spin representationof Spin(n) is simply the restrictionof c to
Spin(n).The restrictionto Pin(n) is unitaryin view of (A. 12), andirreducible,
becausethe complexsubalgebrageneratedby thisgroupisall of Cl0. Therestric-
tion to Spin(n) is thedirect sumof two irreducible“half-spin” representations,
the nonisomorphicsimplemodulesbeingF~(E, J) andF_ (E, J).

We also notethatSpin”(n) embedsnaturally in Cl,, by (x,2) ‘-~ 1x for x E

Spin(n), 2 E U (1). We thus obtain a unitary representationof Spin” (n) on
F (E, J) by restrictionof c.

A.5. Considerthe element

y:= i~~’
21e

1e2e0EC1,,, (A.13)
where {e1,.. . ,e0} is an orthonormalbasis for (E,q0), and [n/2] = k for
n = 2k on n = 2k — 1. If e = gjjej is anotherorthonormalbasis,then
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i1~’21e~e~e~= det(g)y = ±y,so y is independentof the basisprovidedthe
vectorspaceF is given a fixed orientation;this we will assume.It is clearthat

= 1, andthat
xy= (~)~~yxforxEE, (A.14)

sinceeache~anticommuteswith everyfactorof ~‘ but itself.
In particular,if n is odd, then y lies in thetwo-dimensionalcentreof Cl (n). If

n is even, then xy = —yx forx E F.We shall call ~ the chirality elementofCl,,.
Supposethatn = 2k is even.Thenp + : = ~(1 + y) andp— : = ~ (1 — ~) are

complementaryidempotentsin Cl
0, i.e., (p±)

2= p±p+p = pp+ = 0, and
p~+ p = 1. If S is anyleft modulefor Cl

0, it is ~2-gnaded:S = S~~
where5±= p±5arethe±1eigenspacesfor s ~ c(y)s.

In particular,the spinorFock spaceF (E, J) is 7L2-graded.An orthonormal
basisfortheHilbert space(E, J) is givenby {w,, . . . , Wk}, wherew1 : = (e21,—

Je21)/v~write alsowI := (e21, + Je21)/v~.Thenw,7w1 — w1wJ = —2i x

e211e21in Cl(E), sothat y = 2~I
2(w~w,— w,w,*)... (w~wk— wkw~).Since

(wtlw) = Oforany i,j, onechecksthatc(y)actsby(_l)” on A~(E,J);thus
S~= F~(E, J) andS = F (E, J). Thegradingoperatorc(y) is the chirality
operatoron the spinonFockspace.

A.6. The trace of the spin representationinducesa canonical inner product
on Cl

0 (forn = 2k even). If eK := el, ~ forK = {k1,...,kr} c {l,...,n}
(with indicesincreasinglyordered),thentr (c(eK)) = 0 for odd K sincec(eK)

interchangesS~andS,whereas2tr(c(eK)) = tr([c(ek1),c(eK\k)]) = 0 for
K even andnonvoid.Hencetn(c(x)) = 2~’

2a
0is wherea0 is the scalarterm

in the expansion x = >JKaKeK ofx e Cl0. Now ify = ~KbKeK E Cl0, then

sinceeachc(e1) is skew-adjoint,weget

tr(c(x)tc(y)) = ~a~bL(—)’tn(c(/3(eK)eL)) = 2~’
2~a~bK. (A.15)

In particular, if x = e
1 e0, this trace gives the coefficient of e1 e,, in the

expansionof y.

A. 7. Let M be a compactmanifoldwithout boundary.We considermetric vec-
tor bundlesE —~M (i.e., eachfibre E~hasa positivedefinite inner product,
dependingcontinuouslyon x); it happensthat anyvectorbundlecanbe pro-
vided with a metric.The Clifford bundleCl(E) —~M is a vectorbundlewhose
fibre atx E M is the Clifford algebraCl(E~).The spaceof sectionsof Cl(E)
becomesanalgebraunderthe fibrewiseClifford multiplication.

SupposeP —* M is aprincipal fibre bundlewith structuregroup G (acting
freelyon P on thenight), andV is avectorspacecarryingalinearrepresentation
p of G. Theassociatedvectorbundleis P x,,, V —~ M, whereP x~V is the space
of orbits of P x V underthe action (u,v) g = (ug,p(g’)v); its transition
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functionsareof theform p (g,1),wherethe gjj arelocal sectionsof theprincipal
bundle.Conversely,avectorbundlenaturally inducesaprincipal bundleassoci-
atedwith it by employingthe sametransitionfunctions;in which caseG is—in
principle—eitherGL(k,ER) or GL(k,C).

The point is that nothing is lost by constructingmetric vector bundles as
associatedto principal bundlesof the orthogonalon unitary groups.That is, if
E —~ M is a real (on complex) vectorbundleof rankk oven M, therealways
exists aprincipal bundlewith structuregroup 0(k) [U(k)] such that E
PxpERk[E~PxaCk],whenep:O(k)~End(ERt~i[a:U(k)~End(Ctc)]isthe
standardrepresentation.This is basically dueto polardecomposition,applied
to the trivializing mapsof E: we cansubstitutethecorrespondingisometriesfor
thesemaps,as the topology of GL(k, R)/0(k) [GL(k, C)/U(k)] is trivial.

A realvectorbundleE —~ M is orientableif anorientationcanbecontinuously
definedon the fibres; this amountsto choosingthe transitionfunctionsgjj in
SO(k) ratherthan0(k). In view of (A.6), we may thenattempt to lift the
transitionfunctionsto h,1 E Spin(k) suchthat ço(h,1) = g,~.If thiscan be done
consistently,we obtain a new principal bundleP’ —~ M with structuregroup
Spin(k),sothatE = F’ x~,~,R”;andwealsogetadoublecoveringmapit: F’ —~ P

satisfyingit(uh) = 1u(u)co(h).Thepair (P’,~u)definesaspin structureon F.
Thereareobstructionsto orientabilityandexistenceof spin structures;these

are the Stiefel—Whitneyclassesw1 (E) E H
1 (M,Z

2), which vanishesiff E is
orientable,andw2(E) E H

2 (M,7L
2), which vanishesiff a spin structureexists;

for details,seerefs. [19, 20, 35]. M is a spin manifoldif its tangentbundleis
orientableandcarriesa spinstructure.

A wider classof vector bundles is relatedto the group Spin” (k). A spin”
structureon F —~ M is givenby a Spin” principalbundleP andanisomorphism
F P ~ ER”. We havea homomorphism~:Spin”(k) —~ S0(k) : (h,2) ‘—~

ç~(h). Thus, aspin bundle is naturally spin”; but a real vectorbundlecan be
spine’ withoutbeingspin. This isthe casefor theunderlyingbundleof acomplex
vectorbundle,whosestructuregroupisU(k).Toseethis,let r: U(k) —* SO(2k)
be the identificationtaking g E U(k) with g (e1) = e~

0’e
1for asuitablebasis

{e,, . . . ,ek} of Ck to ‘r(g):ej i—p (cosO~)e~+ (sinO~)f~with f~= ie1. Then
TX det:U(k) —+50(2k) x U(l) lifts [2] to a:U(k) —+ Spin”(2k) givenby

a(g) := fle1O,l
2(cos~0j + (sin ~0

1)e1f1),

and çoC o a = T X det. The complextwo-dimensionalprojective spaceis the
outstandingexampleof aspin” manifoldwhich is not spin.

It canbe shownthatF —+ M is a spin” bundleiff its secondStiefel—Whitney
classw2(E) E H

2(M,7L
2) canbelifted to an elementof H

2(M,7L). It turns out
that fordim M = 3, M is a spinmanifold,andif dimM = 4with M orientable,
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thenM is a spin” manifold, i.e., TM —~M is a spin” bundle [20].

A.8. SupposeF —~M is a complex spin” bundlewith F = PE ~ CAT, where
PE —~M is theprincipal spin” bundlewith the transitionfunctionsofF.Suppose
alsothatSis a complexleft modulefor Cl,,, andp is the unitary action, by left
Clifford multiplication, of Spin” (k) on S. Thenwe can form the complexspinor
bundle

S(E):=PEX~S. (A.16)
An importantcomplex spinonbundleis the Clifford bundleCl (F) itself If

F hasrankk, thenSpin”(k) actson Cl,, by Ad(g)c = gcg’. We can there-
fore createthe spinor bundle FE XAd Cl,,. Now Ad(—l) = id, so Ad drops
to a representationa of SO(k) X U(1) andwe can replacePE by the prin-
cipal S0(k) X U(1) bundlePj~with the sametransitionfunctions as F. Now
Ad(g)x = ço”(g)x forx E Ci’, so thata isjusttheusualactionofSO(k) xU(l)

on C’. The associatedbundle ~ X~Cl,, is just the Clifford bundleCl(F).
Let F(S(F)) be the space of smoothsectionsof 5(F); thesearein natural

one-to-onecorrespondencewith thefunctions5: FE —~ S (F), satisfyings(ug) =

p(g~ )s(u), for u E F, g E Spin”(k). Nowlet ic E F(Cl(E)); thenp(,c)smakes
senseas a function from FE to S(F), and (p(ic)s)(ug) := p(K(ug))s(ug) =

p(g’#c(u)g)p(g)’s(u) = p(g’ )(p(K))s(u), so p(K)s E F(S(F)) also.
We concludethat 5(E) is a bundleof modulesover the bundle of algebras
Cl(E), andthatF(S(E)) is a moduleoverF(Cl(F)).

If n = 2k is even, anirreduciblecomplexspinorbundleS(F) carriesanatural
Z2-grading. Since F is oriented, each fibre Cl (Fr) of Cl (F) contains a canoni-
cally determinedchinality elementYx given by (A.l3): let y denotethis section
of Cl(E). Then5(E) = S~(F) + 5(F) wherey acts by ±1on Szl(E).

A. 9. We recallsomefactsaboutconnectionson vectorbundles,mainly to estab-
lish notations.The full story canbe found,e.g., in ref [31].

A (linear) connectionon a vectorbundleE —* Mis a linear mapV: F(F)
F(F 0 T*M) which satisfies

V(sf) = (Vs)f+s®df fonfEC°”~(M). (A.l7)

The tangentbundle of a Riemannianmanifold M carriesa distinguished
connection—theLevi-Civita connection—whichis compatiblewith the metric
and is torsion-free.ConsiderCl (M) : = Cl ( TM), the Clifford bundleof M.
It maybe shownthat thereis a canonicalconnection,alsocalled a Levi-Civita
connectionanddenotedby V, on Cl(M) suchthat

V(c,c2) = (Vc,)c2 +c,(Vc2) fonc,,c2EF(Cl(M)). (A.18)

[On the right, F(Cl(M) 0 T*M) is a bimodulefor F(Cl(M)) in the obvious
way.] Moreover, if S—~M is a spinonbundleon M, thereis a canonicalcon-
nection on 5, alsodenotedby V, suchthat V(c(K)s) = c(VK)s + c(K)Vs for
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K eF (Cl (M)), s E F(S). Theselinear connectionsarerelatedvia a principal
connectionon PTM, obtainedby lifting a principal connectionon the onthonor-
mal framebundleof M. Analogousresultsholdfor complexspinonbundles,with
Cl (M) replacedby its complexificationCl (M) : = Cl (TM).

IfS is thespinonbundleassociatedto the complexirreduciblemodulefor Cl0,
the canonicalconnectionon Ssatisfiesthe threeproperties:

(1) V(c(,c)s) = c(VK)s + c(K)Vs forcE F(Cl(M)), s E F(S).
(2) (c(X)s Is’) + (sI c(X)s’) = 0 for X E F(TM), s,s’ E F(S). Here (‘IS)

is the hermitianform on Sdefinedon the fibres in sectionA.4.
(3) (Vxs I s”) + (5 I Vxs’) = X(s I s”) for X E F(TM), s,s’ e F(S). Here

Vx:F(S) —~ F(S) is the contractionof V with the vector field X.
Property(2) holdssincetheClifford actionof TMx on Sx is skew-adjoint,by
the remarkspreceding(A. 12).

For moregeneralbundlesSof modulesovenCl(M), wetake (1), (2), (3) as
axioms.

A.]0. Let a Riemannianmetric on M begiven; denoteby ~:TM —* T*M the
bundleisomorphisminducedby the metric.With it, we identify TM andT*M.

Definition. Let S —~ M be acomplexspinorbundle,a left modulefor Cl(M),
andlet V:F(S) —~ F(S® TM) bethe canonicalconnectionon S. There is a
morphismofvectorbundlesm: SoTM —~ S givenby restrictionofthe Clifford
multiplicationto TM. TheDirac operatoristhemappingD : = maV : F(5)
F(S).

Proposition A.7. Let{e,,.. . , e,,} bean orthonormaiframeonan opensetU C M,
and let s bea smoothsectionofSover U. AbbreviatingV~: = V~,we have

Ds = >c(ej)Vjs. (A.19)

Proof Let {t,, . . . , tr} be a trivialization of Soven U. The connectionis given
locallyby a matrix of one-formsWqp, suchthatV(t~)= ~ tq ®~(Wqp).If
nows = >j~t~f~E F(S), wehave

V(s) =~(t~®~(df~)+~tq®~(wqp)fp). (A.20)

Thus

Ds = ~(c(~(dfp))tp +
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= ~ (dfp(ei)c(ei)tp + ~wqp(ei)c(ei)tqfp)
j,p=l q=1

= ~c(eJ)VJ(~tpfp)~ (A.21)

since~(w) = >~w(e1)e3 for anyone-formw.

As an immediateconsequenceof (A. 19),we notethatwhenn = 2k, D is an
odd operatoron the Z2-gradedspinorbundle,i.e., D:F(S~)—~ F(S~).

Examples.
(1) If M = ER

0, S = ER0 X 5,, where5,, is the irreduciblecomplexmodulefor
Cl

0, we have Ds = >~, c(e~)0,,s. In particular,if n = 1, Cl, = C, 5, = C,
andD = i 0/Ox.Its kennelkerD consistsof the constantfunctionson ER.

(2) If M = ER
4, we haveCl

4 = C
4>’4, andsoD = y1i

8~,,wherey” = c(e,~)
are the four 4 X 4 matricesgeneratingthe Clifford algebraCl4, i.e., satisfying
y~LyU+ yVyti = _2oPu.Thus D = ~ is essentiallythe operatorintroducedby
Dirac.

(3) ThespinorbundleSonwhich theDiracoperatorD = mo V actsdoesnot
haveto be irreducible.An interestingexampleis whenS is the Clifford bundle
Cl(M) = Cl(T*M) itself, regardedas a Cl(M) moduleunderleft multiplica-
tion. We mayalternativelydescribethis module as thecomplexifiedbundleof
differential formsA,~T*Mon which Cl(M) actsby c(a)/3 = a A /3 — i(a)/3 for
a E A’ (M). Nowone caninvokethe propertiesof the Levi-Civita connection
V to verify that eo V = d, the exteriorderivativeon F(A~T*M) =

andthat i o V = _d*, the formal adjoint to d.
TheDinac operatoron t~(M) is thusD = d + d*. Its squareis D

2 = dd* +

d*d, the so-calledHodgeLaplacianon M. Sinced raisesandd* lowersdegree,
we have kerD = kerD2, which is the spaceof harmonicforms on M. Since
M is compact,Hodge’s theoremassuresus that for each k, kenDn e” (M)
is isomorphicto the de Rhamcohomologygroup H~R(M;ER),which is finite
dimensional.

A.11. Denoteby L2 (5) the Hilbert spaceof squane-integrablesectionsof 5, the
completionofF(S) with the norm

IIsII2 :=J(s(x) Is(x))it(~), (A.22)

whereit (dx) is the canonicalRiemannianvolumeelementon M. We wish to
establish:
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Theorem A.8. TheDirac operatoris formallyself-adjoint on L2 (5).

The divergencediv X of a smoothvector field X on M is the function in
C°°(M)suchthat (divX)it = £x(it), where £x is the Lie derivativewith
respectto X. If {e,, . . . , e~} is anorthonormalframe on an opensubsetU of M
suchthatVe~= 0 on U for eachj, thenwe haveon U

£xit = d(i(X)it) = d(~(_)J’ (e
1 IX) e1 A . A A A en)

= ~e1(e~IX)it = ~(V~e~IX)it + (e~IV1X)it (A.23)

andfrom Ve1 = 0 weconcludethat

divX = >J(ej I V1X). (A.24)

[The assumptionVe1 = 0 canalwaysbe made;if needbe, wecanreplacethe
e1 by thevectorfields obtainedby paralleltranslationof an orthonormalframe
alongthe geodesicsthrougha givenpoint.]

1ff E C”” (M), we thereforehavediv(fX) = Xf + f divX. SinceM is
without boundary,Stokes’ theoremgives JM (divX) it = JMd (i (X ) it) = 0.
We concludethat

fXf = _ffdivX. (A.25)

ProofoftheoremA.8 We prove that for s,s’ E F(S) we have (Ds I s’) = (s I
Ds’), with (~I•)denotingthe innerproductof L

2 (S).We canassume,by using
partitionsofunity on M, thatbothsands’ havetheir supportinsideanopenset
U c M on which thereis anorthonormalframe {e,,. . . , e

0} suchthatVe3 = 0.
Remindingthe “axioms” for V, we arriveat

(DsIs’) = (c(ej)V~sIs’)= -~f(VisIc(ei)s’)

= _~1ei~I c(e1)s’) + I V1(c(e1)s’))

= ~f(divei) (sI c(e1)s’) + ~f(s I V1(c(e1)s’)). (A.26)

From(A.24), dived = 0 for the chosenparallelframe. Thus,the formal adjoint
D~of D satisfies

Dts = ~V1(c(ej)s) = ~c(V~ej)s + c(e1)V1s = Ds, (A.27)
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againsinceVe~= 0.

By examiningthe domainof D moreclosely, it canmoreoverbe shownthat
D is essentiallyself-adjoint; see,for instance,ref [31, thm. 11.5.7]. The Dirac
operatormaynow be redefinedto be the closureof D, which is a self-adjoint
operatoron the Hilbert spaceL2 (5).

We are indebtedto JacekBrodzki andAlain Connesfor making available
their notes,nefs. [4] and [13], respectively,prior to publication.J.C.V.wishes
to thank GuillenmoMoneno for the opportunity to work in the congenialat-
mosphereof theCINVESTAV of theInstitutoPolitécnicoNacionalin Mexico,
while this paperwas in its early stages.We are grateful to an anonymousref-
eree for his comments,which madepossiblea substantialimprovementof the
manuscript,andto RicardoEstradafor helpful discussionsconcerningthe proof
of the tracetheorem.
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